File: lorenz.xmds

package info (click to toggle)
xmds2 2.2.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 53,384 kB
  • ctags: 7,223
  • sloc: python: 54,076; cpp: 3,929; ansic: 1,463; makefile: 135; sh: 20
file content (63 lines) | stat: -rw-r--r-- 1,478 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
  <testing>
    <xsil_file name="lorenz.xsil" expected="lorenz_expected.xsil" absolute_tolerance="1e-4" relative_tolerance="1e-4" />
  </testing>
  
  <name>lorenz</name>
  <author>Graham Dennis</author>
  <description>
    The Lorenz Attractor, an example of chaos.
  </description>
  
  <features>
    <benchmark />
    <globals>
      <![CDATA[
      double sigma = 10.0;
      double b = 8.0/3.0;
      double r = 28.0;
      ]]>
    </globals>
  </features>
  
  <geometry>
    <propagation_dimension> t </propagation_dimension>
  </geometry>
  
  <vector name="main" type="real">
    <components>
      x y z
    </components>
    <initialisation>
      <![CDATA[
      x = y = z = 1.0;
      ]]>
    </initialisation>
  </vector>
  
  <sequence>
    <integrate algorithm="ARK89" interval="20.0" steps="25000" tolerance="1e-7">
      <samples>500</samples>
      <operators>
        <integration_vectors>main</integration_vectors>
        <![CDATA[
        dx_dt = sigma*(y-x);
        dy_dt = r*x - y - x*z;
        dz_dt = x*y - b*z;
        ]]>
      </operators>
    </integrate>
  </sequence>
  <output format="ascii" filename="lorenz.xsil">
      <sampling_group initial_sample="yes">
        <moments>xR yR zR</moments>
        <dependencies>main</dependencies>
        <![CDATA[
          xR = x;
          yR = y;
          zR = z;
        ]]>
      </sampling_group>
  </output>
</simulation>