File: bessel_cosine_stochastic_groundstate.xmds

package info (click to toggle)
xmds2 2.2.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 53,384 kB
  • ctags: 7,223
  • sloc: python: 54,076; cpp: 3,929; ansic: 1,463; makefile: 135; sh: 20
file content (132 lines) | stat: -rw-r--r-- 4,116 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
  <testing>
    <xsil_file name="bessel_cosine_stochastic_groundstate.xsil" expected="bessel_cosine_stochastic_groundstate_expected.xsil" absolute_tolerance="1e-6" relative_tolerance="1e-5" />
  </testing>

  <author>Graham Dennis</author>
  <name>bessel_cosine_stochastic_groundstate</name>
  <description>
    Calculate the 3D ground state of a Rubidium BEC in a harmonic magnetic trap assuming
    cylindrical symmetry about the z axis and reflection symmetry about z=0.
    This permits us to use the cylindrical bessel functions to expand the solution transverse
    to z and a cosine series to expand the solution along z.
  </description>
  
  <features>
    <auto_vectorise />
    <chunked_output size="100KB" />
    <globals>
      <![CDATA[
        const real omegaz = 2*M_PI*20;
        const real omegarho = 2*M_PI*200;
        const real hbar = 1.05457148e-34;
        const real M = 1.409539200000000e-25;
        const real g = 9.8;
        const real scatteringLength = 5.57e-9;
        const real Uint = 4.0*M_PI*hbar*hbar*scatteringLength/M;
        const real Nparticles = 5.0e5;

        /* offset constants */
        const real EnergyOffset = pow(15.0*Nparticles*Uint*omegaz*omegarho*omegarho/(8*M_PI), 2.0/5.0)
                                    * pow(M/2.0, 3.0/5.0);

      ]]>
    </globals>
  </features>
  
  <geometry>
    <propagation_dimension> t </propagation_dimension>
    <transverse_dimensions>
      <dimension name="r" lattice="32"  domain="(0.0, 1.0e-5)" transform="bessel" volume_prefactor="2.0*M_PI" />
      <dimension name="z" lattice="32"  domain="(0.0, 1.0e-4)" transform="dct" volume_prefactor="2.0" />
    </transverse_dimensions>
  </geometry>
  
  <vector name="potential" type="complex">
    <components>
      V1
    </components>
    <initialisation>
      <![CDATA[
        real Vtrap = 0.5*M*(omegarho*omegarho*r*r + omegaz*omegaz*z*z);
      
        V1  = -i/hbar*(Vtrap - EnergyOffset);
      
      ]]>
    </initialisation>
  </vector>
  
  <noise_vector name="noise" kind="gaussian" method="solirte" type="complex" seed="15687 65687 684320 4057 354">
    <components>eta</components>
  </noise_vector>
  
  <vector name="wavefunction" type="complex">
    <components>
      phi
    </components>
    <initialisation>
      <dependencies>noise</dependencies>
      <![CDATA[
      
        if ((abs(r) < 0.9e-5) && abs(z) < 0.9e-4) {
          phi = eta;
          // This will be automatically normalised later
        } else {
          phi = 0.0;
        }
      
      ]]>
    </initialisation>
  </vector>
  
  <computed_vector name="normalisation" dimensions="" type="real">
    <components>
      Ncalc
    </components>
    <evaluation>
      <dependencies>wavefunction</dependencies>
      <![CDATA[
        // Calculate the current normalisation of the wave function.
        Ncalc = mod2(phi);
      ]]>
    </evaluation>
  </computed_vector>
  
  <sequence>
    <integrate algorithm="RK4" interval="1e-4" steps="1000">
      <samples>100</samples>
      <filters>
        <filter>
          <dependencies>wavefunction normalisation</dependencies>
          <![CDATA[
            // Correct normalisation of the wavefunction
            phi *= sqrt(Nparticles/Ncalc);
          ]]>
        </filter>
      </filters>
      <operators>
        <operator kind="ip" constant="yes">
          <operator_names>T</operator_names>
          <![CDATA[
            T = -0.5*hbar/M*(kr*kr + kz*kz);
          ]]>
        </operator>
        <integration_vectors>wavefunction</integration_vectors>
        <dependencies>potential</dependencies>
        <![CDATA[
          dphi_dt = T[phi] - (i*V1 + Uint/hbar*mod2(phi))*phi;
        ]]>
      </operators>
    </integrate>
  </sequence>
  <output format="hdf5">
      <sampling_group basis="r z" initial_sample="no">
        <moments>norm_dens</moments>
        <dependencies>wavefunction normalisation</dependencies>
        <![CDATA[
          norm_dens = mod2(phi)/Ncalc;
        ]]>
      </sampling_group>
  </output>
</simulation>