1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
|
@*
HermiteGaussFourierEPBasis.tmpl
Hermite-Gauss Fourier basis using the definite parity of the basis functions to remove
half the work.
Created by Graham Dennis on 2009-08-12.
Copyright (c) 2009-2012, Graham Dennis
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*@
@extends xpdeint.Features.Transforms.HermiteGaussEPBasis
@def description: Hermite-Gauss Fourier basis (Harmonic oscillator)
@attr $matrixType = 'complex'
@def transformMatricesForwardDimConstantsAtIndex($forwardDimRep, $backwardDimRep, $forwardIndex)
@super(forwardDimRep, backwardDimRep, forwardIndex)
complex eigenvalue_factor = 1.0;
@end def
@def transformMatricesForDimRepsAtIndices($forwardDimRep, $backwardDimRep, $forwardIndex, $backwardIndex)
@#
@super(forwardDimRep, backwardDimRep, forwardIndex, backwardIndex)
eigenvalue_factor *= i;
@#
@end def
@def forwardMatrixForDimAtIndices($forwardDimRep, $backwardDimRep, $forwardIndex, $backwardIndex)
eigenvalue_factor * @super(forwardDimRep, backwardDimRep, forwardIndex, backwardIndex)@slurp
@end def
@def backwardMatrixForDimAtIndices($forwardDimRep, $backwardDimRep, $forwardIndex, $backwardIndex)
conj(eigenvalue_factor) * @super(forwardDimRep, backwardDimRep, forwardIndex, backwardIndex)@slurp
@end def
|