File: AdaptiveStep.tmpl

package info (click to toggle)
xmds2 2.2.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 53,384 kB
  • ctags: 7,223
  • sloc: python: 54,076; cpp: 3,929; ansic: 1,463; makefile: 135; sh: 20
file content (403 lines) | stat: -rw-r--r-- 14,596 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
F@*
AdaptiveStep.tmpl

Created by Graham Dennis on 2007-11-16.

Copyright (c) 2007-2012, Graham Dennis

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

*@
@extends xpdeint.Segments.Integrators.Integrator

@def description: segment $segmentNumber ($stepper.name adaptive-step integrator)

@attr $supportsConstantIPOperators = False

@*
  Function prototypes
*@
@def functionPrototypes
  @#
  @super
  @#
real _segment${segmentNumber}_setup_sampling(bool* _next_sample_flag, long* _next_sample_counter);
  @#
  @for $vector in $integrationVectors
real _segment${segmentNumber}_${vector.id}_timestep_error(${vector.type}* _checkfield);
bool _segment${segmentNumber}_${vector.id}_reset(${vector.type}* _reset_to);
  @end for
  @#
@end def


@*
  Function implementations
*@
@def functionImplementations
  @#
  @super
  @#
${setupSamplingFunctionImplementation}@slurp
  @for $vector in $integrationVectors

${timestepErrorFunctionImplementation($vector)}@slurp

${resetFunctionImplementation($vector)}@slurp
  @end for
  @#
@end def


@def setupSamplingFunctionImplementation
  @#
real _segment${segmentNumber}_setup_sampling(bool* _next_sample_flag, long* _next_sample_counter)
{
  // The numbers of the moment groups that need to be sampled at the next sampling point.
  // An entry of N+1 means "reached end of integration interval"
  long _momentGroupNumbersNeedingSamplingNext[${len($samples) + 1}];
  long _numberOfMomentGroupsToBeSampledNext = 1;
  
  long _previous_m = 1;
  long _previous_M = 1;
  
  real _${propagationDimension}_break_next = (real)${interval};
  _momentGroupNumbersNeedingSamplingNext[0] = ${len($samples)};
  
  // initialise all flags to false
  for (long _i0 = 0; _i0 < ${len($samples) + 1}; _i0++)
    _next_sample_flag[_i0] = false;
  
  /* Check if moment group needs sampling at the same time as another already discovered sample (or the final time).
   * If so, add this moment group to the to-be-sampled list. If moment group demands sampling earlier than all
   * previously noted moment groups, erase all previous ones from list and set the sample time to this earlier one.
   */
  @for $momentGroupNumber, $sampleCount in enumerate($samples)
    @if $sampleCount == 0
      @continue
    @end if
  if (_next_sample_counter[$momentGroupNumber] * _previous_M == _previous_m * $sampleCount) {
    _momentGroupNumbersNeedingSamplingNext[_numberOfMomentGroupsToBeSampledNext] = $momentGroupNumber;
    _numberOfMomentGroupsToBeSampledNext++;
  } else if (_next_sample_counter[$momentGroupNumber] * _previous_M < _previous_m * $sampleCount) {
    _${propagationDimension}_break_next = _next_sample_counter[$momentGroupNumber] * ((real)$interval) / ((real)$sampleCount);
    _numberOfMomentGroupsToBeSampledNext = 1;
    _momentGroupNumbersNeedingSamplingNext[0] = $momentGroupNumber;
    _previous_M = $sampleCount;
    _previous_m = _next_sample_counter[$momentGroupNumber];
  }
  
  @end for
  // _momentGroupNumbersNeedingSamplingNext now contains the complete list of moment groups that need
  // to be sampled at the next sampling point. Set their flags to true.
  for (long _i0 = 0; _i0 < _numberOfMomentGroupsToBeSampledNext; _i0++)
    _next_sample_flag[_momentGroupNumbersNeedingSamplingNext[_i0]] = true;
  
  return _${propagationDimension}_break_next;
}
  @#
@end def


@def timestepErrorFunctionImplementation($vector)
  @#
real _segment${segmentNumber}_${vector.id}_timestep_error(${vector.type}* _checkfield)
{
  real _error = 1e-24;
  real _temp_error = 0.0;
  real _temp_mod = 0.0;

  @set $featureOrdering = ['Diagnostics']
  @set $dict = {'vector': vector}
  ${insertCodeForFeatures('timestepErrorBegin', featureOrdering, {'vector': vector}), autoIndent=True}@slurp
  
  @if len($vector.field.dimensions) > 0
    @# FIXME: We need to have the capacity to have both a peak cutoff and an absolute cutoff
  // Find the peak value for each component of the field
  real _cutoff[_${vector.id}_ncomponents];
  
  for (long _i0 = 0; _i0 < _${vector.id}_ncomponents; _i0++)
    _cutoff[_i0] = 0.0;
  
  {
    ${loopOverVectorsInBasisWithInnerContent([vector], $homeBasis, $insideFindPeakLoops(vector)), autoIndent=True}@slurp
  }
  ${insertCodeForFeatures('findMax', ['Driver'], {'variable': '_cutoff', 'count': c'_${vector.id}_ncomponents'}), autoIndent=True}@slurp
  
  for (long _i0 = 0; _i0 < _${vector.id}_ncomponents; _i0++) {
    if (_xmds_isnonfinite(_cutoff[_i0]))
      // Return an error two times the tolerance in this case because the timestep must be reduced.
      return 2.0*${tolerance};
    _cutoff[_i0] *= ${cutoff};
    @if $vector.type == 'complex'
      @# multiply again because we are using norm for our complex vector and the cutoff should be interpreted in terms of
      @# the absolute magnitude of the variables, not the mod-square
    _cutoff[_i0] *= ${cutoff};
    @end if
  }
  @end if
  
  @# Code for absolute cutoff should go here and modify
  @# the _cutoff variables
  @#
  @# @for $absoluteCutoff in $absoluteCutoffs
  @# // absolute cutoff for component '$absoluteCutoff.name'
  @# if (_cutoff[${absoluteCutoff.componentIndex}])
  @# @end for
  @#
  {
    ${loopOverVectorsInBasisWithInnerContent([vector], $homeBasis, $insideFindMaxErrorLoops(vector)), autoIndent=True}@slurp
  }
  ${insertCodeForFeatures('findMax', ['Driver'], {'variable': '&_error', 'count': '1'}), autoIndent=True}@slurp
  ${insertCodeForFeaturesInReverseOrder('timestepErrorEnd', featureOrdering, dict), autoIndent=True}@slurp
  
  return _error;
}
  @#
@end def


@def insideFindPeakLoops($vector)
  @#
for (long _i1 = 0; _i1 < _${vector.id}_ncomponents; _i1++) {
  @if $vector.type == 'complex'
    @set $modFunction = 'mod2'
  @else
    @set $modFunction = 'abs'
  @end if
  _temp_mod = ${modFunction}(_${vector.id}[_${vector.id}_index_pointer + _i1]);
  if (_xmds_isnonfinite(_temp_mod))
    _cutoff[_i1] = INFINITY;
  else if (_cutoff[_i1] < _temp_mod)
    _cutoff[_i1] = _temp_mod;
}
  @#
@end def


@def insideFindMaxErrorLoops($vector)
  @#
for (long  _i1 = 0; _i1 < _${vector.id}_ncomponents; _i1++) {
  @if $vector.type == 'complex'
    @set $modCutoffFunction = 'mod2'
  @else
    @set $modCutoffFunction = 'abs'
  @end if
  @if len($vector.field.dimensions) > 0
  if (${modCutoffFunction}(_${vector.id}[_${vector.id}_index_pointer + _i1]) > _cutoff[_i1]) {
    ${updateMaximumError($vector), autoIndent=True}@slurp
  }
  @else
  ${updateMaximumError($vector), autoIndent=True}@slurp
  @end if
}
  @#
@end def

@def insideLookForNaNLoops($vector)
  @#
  @# No point in fancy logic trying to exit the test early if a NaN is found, even
  @# though this is hot path code, since a NaN means we're about to exit the simulation
  @# anyway. Worth having seperate code depending on whether the vector values are
  @# real or complex though, since complex requires either two checks or taking the
  @# modulus. Presumably two seperate Re(), Im() checks are faster than mod2
  @#
  for (long _i1 = 0; _i1 < _${vector.id}_ncomponents; _i1++) {
  @if $vector.type == 'complex'
    if (_xmds_isnonfinite(_${vector.id}[_${vector.id}_index_pointer + _i1].Re())
      || _xmds_isnonfinite(_${vector.id}[_${vector.id}_index_pointer + _i1].Im())) bNoNaNsPresent = false;
  @else
    if (_xmds_isnonfinite(_${vector.id}[_${vector.id}_index_pointer + _i1])) bNoNaNsPresent = false;
  @end if
  }
  @#
@end def

@def updateMaximumError($vector)
  @#
_temp_error = abs(_${vector.id}[_${vector.id}_index_pointer + _i1] - _checkfield[_${vector.id}_index_pointer + _i1]) / (0.5*abs(_${vector.id}[_${vector.id}_index_pointer + _i1]) + 0.5*abs(_checkfield[_${vector.id}_index_pointer + _i1]));

if (_xmds_isnonfinite(_temp_error)) {
  /* For _temp_error to be NaN, both the absolute value of the higher and lower order solutions
     must BOTH be zero. This therefore implies that their difference is zero, and that there is no error. */
  _temp_error = 0.0;
}

if (_error < _temp_error) // UNVECTORISABLE
  _error = _temp_error;
  @#
${insertCodeForFeatures('updateMaximumError', ['Diagnostics'], {'vector': vector})}@slurp
  @#
@end def


@def resetFunctionImplementation($vector)
  @#
bool _segment${segmentNumber}_${vector.id}_reset(${vector.type}* _reset_to_${vector.id})
{
  ${copyVectors([vector], destPrefix = '', srcPrefix = '_reset_to'), autoIndent=True}@slurp
  
  /* return false if there's a NaN somewhere in the vector, otherwise return true */
  bool bNoNaNsPresent = true;
  {
    ${loopOverVectorsInBasisWithInnerContent([vector], $homeBasis, $insideLookForNaNLoops(vector)), autoIndent=True}@slurp
  }
  return bNoNaNsPresent;
}
  @#
@end def

@def createToleranceVariable
@*doc:
This function returns the code that will create a _step variable,
including any modifications necessary due to the ErrorCheck feature.
*@
  @#
real _tolerance = ${tolerance};
  @#
  @set $featureOrdering = ['ErrorCheck']
${insertCodeForFeatures('createToleranceVariable', featureOrdering)}@slurp
  @#
@end def

@def segmentFunctionBody($function)
  @#
real _step = ${interval}/(real)${stepCount};
real _old_step = _step;
real _min_step = _step;
real _max_step = _step;
long _attempted_steps = 0;
long _unsuccessful_steps = 0;

${createToleranceVariable}@slurp
  @# Insert code for features
  @set $featureOrderingOuter = ['Stochastic']
${insertCodeForFeatures('integrateAdaptiveStepBegin', featureOrderingOuter)}@slurp

real _error, _last_norm_error = 1.0;
  @for $vector in $integrationVectors
real _${name}_${vector.id}_error;
  @end for

bool _discard = false;
bool _break_next = false;

  @set $momentGroupCount = len($momentGroups)
bool _next_sample_flag[${momentGroupCount + 2}];
for (long _i0 = 0; _i0 < ${momentGroupCount + 2}; _i0++)
  _next_sample_flag[_i0] = false;

long _next_sample_counter[$momentGroupCount];
for (long _i0 = 0; _i0 < $momentGroupCount; _i0++)
  _next_sample_counter[_i0] = 1;

real _${propagationDimension}_local = 0.0;

real _${propagationDimension}_break_next = _${name}_setup_sampling(_next_sample_flag, _next_sample_counter);

if ( (_${propagationDimension}_local + _step)*(1.0 + _EPSILON) >= _${propagationDimension}_break_next) {
  _break_next = true;
  _step = _${propagationDimension}_break_next - _${propagationDimension}_local;
}

${allocate}@slurp
${initialise}@slurp
${localInitialise}@slurp

do {
  @set $featureOrderingOuterLoop = ['MaxIterations', 'Output', 'ErrorCheck']
  ${insertCodeForFeatures('integrateAdaptiveStepOuterLoopBegin', featureOrderingOuterLoop), autoIndent=True}@slurp
  
  ${preSingleStep, autoIndent=True}@slurp
  do {
  @# Insert code for features
  @set $featureOrderingInnerLoop = ['Stochastic']
    ${insertCodeForFeatures('integrateAdaptiveStepInnerLoopBegin', featureOrderingInnerLoop), autoIndent=True}@slurp
    
    ${stepper.singleIntegrationStep(function), autoIndent=True}@slurp
    
    ${insertCodeForFeaturesInReverseOrder('integrateAdaptiveStepInnerLoopEnd', featureOrderingInnerLoop), autoIndent=True}@slurp
    
    _error = 0.0;
  @for $vector in $integrationVectors
    
    _${name}_${vector.id}_error = _${name}_${vector.id}_timestep_error(_${stepper.errorFieldName}_${vector.id});
    if (_${name}_${vector.id}_error > _error)
      _error = _${name}_${vector.id}_error;
  @end for
    
    _attempted_steps++;
    
  @set $featureOrderingForToleranceChecking = ['Diagnostics', 'Stochastic']
    if (_error < _tolerance) {
      ${insertCodeForFeatures('adaptiveStepSucceeded', $featureOrderingForToleranceChecking), autoIndent=True}@slurp
      _${propagationDimension}_local += _step;
      if (_step > _max_step)
        _max_step = _step;
      if (!_break_next && _step < _min_step)
        _min_step = _step;
      _discard = false;
    } else {
      ${insertCodeForFeatures('adaptiveStepFailed', $featureOrderingForToleranceChecking), autoIndent=True}@slurp
      ${propagationDimension} -= _step;

  @for $vector in $integrationVectors
      if (_${name}_${vector.id}_reset(_${stepper.resetFieldName}_${vector.id}) == false) {

        _LOG(_WARNING_LOG_LEVEL, "WARNING: NaN present. Integration halted at ${propagationDimension} = %e.\n"
                           "         Non-finite number in integration vector \"${vector.name}\" in segment ${segmentNumber}.\n", $propagationDimension);
        ${earlyTerminationCode, autoIndent=True}@slurp 
      }
  @end for

      ${functions['ipEvolve'].call(_exponent = -1, parentFunction=function)}
      
      _discard = true;
      _break_next = false;
      _unsuccessful_steps++;
    }
    
    _old_step = _step;
    
    // Resize step
    if (_error < 0.5*_tolerance || _error > _tolerance) {
      const real _safetyFactor = 0.90;
      real _scalingFactor = _safetyFactor * pow(abs(_error/_tolerance), real(-0.7/${integrationOrder})) * pow(_last_norm_error, real(0.4/${integrationOrder}));
      _scalingFactor = MAX(_scalingFactor, 1.0/5.0);
      _scalingFactor = MIN(_scalingFactor, 7.0);
      if (_error > _tolerance && _scalingFactor > 1.0) {
        // If our step failed don't try and increase our step size. That would be silly.
        _scalingFactor = _safetyFactor * pow(abs(_error/_tolerance), real(-1.0/${integrationOrder}));
      }
      _old_step = _step;
      _last_norm_error = pow(_safetyFactor/_scalingFactor*pow(_last_norm_error, real(0.4/${integrationOrder})), real(${integrationOrder}/0.7));
      _step *= _scalingFactor;
    }
    
  } while (_discard);
  ${postSingleStep, autoIndent=True}@slurp
  
  ${insertCodeForFeaturesInReverseOrder('integrateAdaptiveStepOuterLoopEnd', featureOrderingOuterLoop), autoIndent=True}@slurp
} while (!_next_sample_flag[${momentGroupCount + 1}]);

${localFinalise}@slurp
${finalise}@slurp
${free}@slurp
  @#
${insertCodeForFeaturesInReverseOrder('integrateAdaptiveStepEnd', featureOrderingOuter)}@slurp

_LOG(_SEGMENT_LOG_LEVEL, "Segment ${segmentNumber}: minimum timestep: %e maximum timestep: %e\n", _min_step, _max_step);
_LOG(_SEGMENT_LOG_LEVEL, "  Attempted %li steps, %.2f%% steps failed.\n", _attempted_steps, (100.0*_unsuccessful_steps)/_attempted_steps);
  @#
@end def