File: PoissonianRandomVariable.tmpl

package info (click to toggle)
xmds2 2.2.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 53,384 kB
  • ctags: 7,223
  • sloc: python: 54,076; cpp: 3,929; ansic: 1,463; makefile: 135; sh: 20
file content (205 lines) | stat: -rw-r--r-- 6,995 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
@*
PoissonianRandomVariable.tmpl

Created by Joe Hope on 2009-08-22.

Copyright (c) 2009-2012, Joe Hope

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

*@
@extends xpdeint.ScriptElement

@from xpdeint.CallOnceGuards import callOnceGuard

@def splitNoise($function)
@*doc:
Return the code to generate a new smaller poissonian noise from a previous noise.

The previous noise had a time step of ``_old_smallest_step`` a variable available in the C
code, not in the template itself.
*@
  @#
  @set noiseVector = $parent
// Split a poissonian noise
const real _new_var = 1.0 / (${noiseVector.spatiallyIndependentVolumeElement} * _new_step);
const real _old_volume = (${noiseVector.spatiallyIndependentVolumeElement} * _old_step);

  @capture loopString
    @silent nonUniformDimReps = noiseVector.nonUniformDimReps
    @if nonUniformDimReps
      @set volumeFixup = ' * '.join('%s * (%s)' % (dimRep.stepSize, dimRep.volumePrefactor) for dimRep in nonUniformDimReps)
      @set varFixup = ' / (' + volumeFixup + ')'
      @set volumeFixup = ' * ' + volumeFixup
    @else
      @set volumeFixup = ''
      @set varFixup = ''
    @end if
    @for componentNumber, component in enumerate(noiseVector.components)
${component} = _new_var${varFixup} * _poisplit_${noiseVector.id}(_new_step/_old_step, lrint(_old_array[_${noiseVector.id}_index_pointer + ${componentNumber}] * _old_volume${volumeFixup}));
    @end for
  @end capture
${loopOverFieldInBasisWithVectorsAndInnerContent(noiseVector.field, noiseVector.initialBasis, [noiseVector], loopString)}@slurp

  @#
@end def

@def makeNoises
@*doc:
  Return the code for the contents of the makeNoises function for
  a poissonian random variable, by which we mean a jump process.  
  Much of this is likely to change when we implement triggered filters
  to model jump processes efficiently.
*@
  @#
  @set noiseVector = $parent
  @#
const real _dVdt = ${noiseVector.spatiallyIndependentVolumeElement}@slurp
  @if not noiseVector.static:
 * _step@slurp
  @end if
;
const real _var = 1.0 / _dVdt;
  @capture loopString
    @silent nonUniformDimReps = noiseVector.nonUniformDimReps
    @if nonUniformDimReps
      @set volumeFixup = ' * '.join('%s * (%s)' % (dimRep.stepSize, dimRep.volumePrefactor) for dimRep in nonUniformDimReps)
      @set varFixup = ' / (' + volumeFixup + ')'
      @set volumeFixup = ' * ' + volumeFixup
    @else
      @set volumeFixup = ''
      @set varFixup = ''
    @end if
    @for component in noiseVector.components
${component} = _var${varFixup} * _poidev_${noiseVector.id}(${noiseMeanRate} * _dVdt${volumeFixup});
    @end for
  @end capture
${loopOverFieldInBasisWithVectorsAndInnerContent(noiseVector.field, noiseVector.initialBasis, [noiseVector], loopString)}@slurp
  @#
@end def

@def functionPrototypes
  @#
  @super
  @#
  @set noiseVector = $parent
  @#
real _poidev_${noiseVector.id}(real xm);
real _poisplit_${noiseVector.id}(real pp, int n);
  @#
@end def

@def functionImplementations
  @#
  @super
  @#
  @set noiseVector = $parent
  @#
real _poidev_${noiseVector.id}(real xm)
{
  real sq, alxm, g, em, t, y;

  if (xm < 12.0) {        // Use direct method
    g = exp(-xm);
    em = -1.0;
    t = 1.0;
    // Instead of adding exponential deviates it is equivalent
    // to multiply uniform deviates.  We never actually have to
    // take the log, merely compare to the pre-computed exponential
    do {
      ++em;
      t *= ${generator.zeroToOneRandomNumber()};
    } while (t > g);
  } else {
    // Use rejection method
    sq = sqrt(2.0*xm);
    alxm = log(xm);
    g = xm*alxm - lgamma(xm + 1.0);
    do {
      do {
        // y is a deviate from a Lorenzian comparison function
        y = tan(M_PI*${generator.zeroToOneRandomNumber()});
        // em is y, shifted and scaled
        em = sq*y + xm;
      } while (em < 0.0);  // Reject if in regime of zero probability
      em = floor(em);      // The trick for integer-valued distributions
      t = 0.9*(1.0 + y*y)*exp(em*alxm - lgamma(em + 1.0) - g);
      // The ratio of the desired distribution to the comparison
      // function; we reject by comparing it to another uniform
      // deviate. The factor 0.9 so that t never exceeds 1.
    } while (${generator.zeroToOneRandomNumber()} > t);
  }
  return em;
}

real _poisplit_${noiseVector.id}(real pp, int n)
{
  /*
  Returns as a floating-point number an integer value that is a random deviate drawn from
  a binomial distribution of n trials each of probability pp, using erand48(_generator) as a source of
  uniform random deviates. This is exactly the distribution that must be sampled when a poissonian process is split over two smaller time steps
  */

  long j;
  real am, em, g, p, bnl, sq, t, y;
  static real pc, plog, pclog, en, oldg;

  // The binomial distribution is invariant under changing pp to 1-pp,
  // if we also change the answer to n minus itself; we do this at the end.
  p = (pp <= 0.5 ? pp : 1.0-pp);

  // This is the mean of the deviate to be produced.
  am = n * p;

  if (n < 25) {
    // Use the direct method while n is not too large. This can require up to 25 calls to erand48(_generator).
    bnl = 0.0;
    for (j = 1; j <= n; j++)
      if (${generator.zeroToOneRandomNumber()} < p)
        ++bnl;
  } else if (am < 1.0) {
    // If fewer than one event is expected out of 25 or more trials, then the distribution is quite accurately Poisson. Use direct Poisson method.
    g = exp(-am);
    t = 1.0;
    for (j = 0; j <= n; j++) {
      t *= ${generator.zeroToOneRandomNumber()};
      if (t < g)
        break;
    }
    bnl = (j <= n ? j : n);
  } else {
    en = n;
    oldg = lgamma(en + 1.0);
    pc = 1.0 - p;
    plog = log(p);
    pclog = log(pc);
    sq = sqrt(2.0*am*pc);
    // The following code should by now seem familiar: rejection method with a Lorentzian comparison function.
    do {
      do {
        y = tan(M_PI*${generator.zeroToOneRandomNumber()});
        em = sq*y + am;
      } while (em < 0.0 || em >= (en+1.0)); // Reject.
      em = floor(em); // Trick for integer-valued distribution. 
      t = 1.2 * sq * (1.0 + y*y) * exp(oldg - lgamma(em + 1.0) - lgamma(en - em + 1.0) + em*plog + (en - em)*pclog); 
    } while (${generator.zeroToOneRandomNumber()} > t); // Reject. This happens about 1.5 times per deviate, on average.
    bnl = em;
  }
  if (p != pp) bnl = n - bnl; // Remember to undo the symmetry transformation.
  return bnl;
}

  @#
@end def