File: anharmonic_oscillator_wigner_mpi.xmds

package info (click to toggle)
xmds2 2.2.3%2Bdfsg-15
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 53,904 kB
  • sloc: python: 54,093; cpp: 3,929; ansic: 1,463; makefile: 115; sh: 54
file content (164 lines) | stat: -rw-r--r-- 4,929 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
  <testing>
    <command_line>mpirun -n 1 ./anharmonic_oscillator_wigner_mpi</command_line>
    <input_xsil_file name="anharmonic_oscillator_wigner_mpi_initial_even.xsil" />
    <input_xsil_file name="anharmonic_oscillator_wigner_mpi_initial_odd.xsil" />
    <xsil_file name="anharmonic_oscillator_wigner_mpi.xsil" expected="anharmonic_oscillator_wigner_mpi_expected.xsil" absolute_tolerance="1e-5" relative_tolerance="1e-5" />
  </testing>
  
  <name>anharmonic_oscillator_wigner_mpi</name>
  <author>Graham Dennis</author>
  <description>
    Simulation of the Truncated Wigner function for an anharmonic oscillator with the initial state
    being a coherent state.
  </description>
  
  <features>
    <benchmark />
    <bing />
    <fftw plan="patient"/>
    <globals>
      <![CDATA[

      /* system constants */
        const real omega = 0.0;
        const real g = 1.0;
        
      /* initial state constants */
        const real alpha_0 = 3.0;
        
      ]]>
    </globals>
    <validation kind="run-time" />
  </features>
  
  <driver name="distributed-mpi" />
  
  <geometry>
    <propagation_dimension> t </propagation_dimension>
    <transverse_dimensions>
      <dimension name="m" type="integer" lattice="21" domain="(0, 20)" />
      <dimension name="r" lattice="64"  domain="(0, 6)" transform="dct" />
      <dimension name="s" lattice="64"  domain="(0, 6)" transform="dst" />
      <dimension name="theta" lattice="32"  domain="(-M_PI, M_PI)" />
    </transverse_dimensions>
  </geometry>
  
  <vector name="evens" dimensions="m r" type="complex">
    <components>
      hE
    </components>
    <initialisation kind="xsil">
      <filename>anharmonic_oscillator_wigner_mpi_initial_even.xsil</filename>
    </initialisation>
  </vector>
  
  <vector name="odds" dimensions="m s" type="complex">
    <components>
      hO
    </components>
    <initialisation kind="xsil">
      <filename>anharmonic_oscillator_wigner_mpi_initial_odd.xsil</filename>
    </initialisation>
  </vector>
  
  <vector name="trig" dimensions="m theta" type="real">
    <components>cos_me sin_me cos_mo sin_mo</components>
    <initialisation>
      <![CDATA[
        cos_me = cos(2.0*m*theta);
        sin_me = sin(2.0*m*theta);
        cos_mo = cos((2.0*m+1.0)*theta);
        sin_mo = sin((2.0*m+1.0)*theta);
      ]]>
    </initialisation>
  </vector>
  
  <computed_vector name="WignerEven" dimensions="r theta" type="real">
    <components>WE</components>
    <evaluation>
      <dependencies>evens trig</dependencies>
      <![CDATA[
        WE = hE.Re()*cos_me + hE.Im()*sin_me;
      ]]>
    </evaluation>
  </computed_vector>
  
  <computed_vector name="WignerOdd" dimensions="s theta" type="real">
    <components>WO</components>
    <evaluation>
      <dependencies>odds trig</dependencies>
      <![CDATA[
        WO = hO.Re()*cos_mo + hO.Im()*sin_mo;
      ]]>
    </evaluation>
  </computed_vector>
  
  <sequence>
    <integrate algorithm="ARK45" cutoff="1e-3" tolerance="1e-5" interval="7.0e-1" steps="100000">
      <samples>20 20 20 20 20 20</samples>
      <operators dimensions="r m">
        <integration_vectors>evens</integration_vectors>
        <![CDATA[
          const real M = 2*m;
          dhE_dt = -i*omega*M*hE - i*g*(r*r-1.0)*M*hE;
        ]]>
      </operators>
      <operators dimensions="s m">
        <integration_vectors>odds</integration_vectors>
        <![CDATA[
          const real M = 2*m+1.0;
          dhO_dt = -i*omega*M*hO - i*g*(s*s-1.0)*M*hO;
        ]]>
      </operators>
    </integrate>
  </sequence>
  
  <output format="binary">
    <group>
      <sampling basis="r theta" initial_sample="yes">
        <moments>WER</moments>
        <dependencies>WignerEven</dependencies>
        <![CDATA[
          WER = WE;
        ]]>
      </sampling>
    </group>
    <sampling_group basis="s theta" initial_sample="yes">
      <moments>WOR</moments>
      <dependencies>WignerOdd</dependencies>
      <![CDATA[
        WOR = WO;
      ]]>
    </sampling_group>
    <sampling_group basis="m r" initial_sample="yes">
      <moments>hER hEI</moments>
      <dependencies>evens</dependencies>
      <![CDATA[
        _SAMPLE_COMPLEX(hE);
      ]]>
    </sampling_group>
    <sampling_group basis="m s" initial_sample="yes">
      <moments>hOR hOI</moments>
      <dependencies>odds</dependencies>
      <![CDATA[
        _SAMPLE_COMPLEX(hO);
      ]]>
    </sampling_group>
    <sampling_group basis="m kr" initial_sample="yes">
      <moments>hER hEI</moments>
      <dependencies>evens</dependencies>
      <![CDATA[
        _SAMPLE_COMPLEX(hE);
      ]]>
    </sampling_group>
    <sampling_group basis="m ks" initial_sample="yes">
      <moments>hOR hOI</moments>
      <dependencies>odds</dependencies>
      <![CDATA[
        _SAMPLE_COMPLEX(hO);
      ]]>
    </sampling_group>
  </output>
</simulation>