1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
<testing>
<command_line>mpirun -n 1 ./anharmonic_oscillator_wigner_mpi_parsing</command_line>
<input_xsil_file name="anharmonic_oscillator_wigner_mpi_initial_even.xsil" />
<input_xsil_file name="anharmonic_oscillator_wigner_mpi_initial_odd.xsil" />
<xsil_file name="anharmonic_oscillator_wigner_mpi_parsing.xsil" expected="anharmonic_oscillator_wigner_mpi_expected.xsil" absolute_tolerance="1e-5" relative_tolerance="1e-5" />
</testing>
<name>anharmonic_oscillator_wigner_mpi_parsing</name>
<author>Graham Dennis</author>
<description>
Simulation of the Truncated Wigner function for an anharmonic oscillator with the initial state
being a coherent state.
</description>
<features>
<benchmark />
<bing />
<fftw plan="patient"/>
<globals>
<![CDATA[
/* system constants */
const real omega = 0.0;
const real g = 1.0;
/* initial state constants */
const real alpha_0 = 3.0;
]]>
</globals>
<validation kind="run-time" />
</features>
<driver name="distributed-mpi" />
<geometry>
<propagation_dimension> t </propagation_dimension>
<transverse_dimensions>
<dimension name="m" type="integer" lattice="21" domain="(0, 20)" />
<dimension name="r" lattice="64" domain="(0, 6)" transform="dct" />
<dimension name="s" lattice="64" domain="(0, 6)" transform="dst" />
<dimension name="theta" lattice="32" domain="(-M_PI, M_PI)" />
</transverse_dimensions>
</geometry>
<vector name="evens" dimensions="m r" type="complex">
<components>
hE
</components>
<initialisation kind="xsil">
<filename>anharmonic_oscillator_wigner_mpi_initial_even.xsil</filename>
</initialisation>
</vector>
<vector name="odds" dimensions="m s" type="complex">
<components>
hO
</components>
<initialisation kind="xsil">
<filename>anharmonic_oscillator_wigner_mpi_initial_odd.xsil</filename>
</initialisation>
</vector>
<vector name="trig" dimensions="m theta" type="real">
<components>cos_me sin_me cos_mo sin_mo</components>
<initialisation>
<![CDATA[
cos_me = cos(2.0*m*theta);
sin_me = sin(2.0*m*theta);
cos_mo = cos((2.0*m+1.0)*theta);
sin_mo = sin((2.0*m+1.0)*theta);
]]>
</initialisation>
</vector>
<computed_vector name="WignerEven" dimensions="r theta" type="real">
<components>WE</components>
<evaluation>
<dependencies>evens trig</dependencies>
<![CDATA[
WE = hE.Re()*cos_me + hE.Im()*sin_me;
]]>
</evaluation>
</computed_vector>
<computed_vector name="WignerOdd" dimensions="s theta" type="real">
<components>WO</components>
<evaluation>
<dependencies>odds trig</dependencies>
<![CDATA[
WO = hO.Re()*cos_mo + hO.Im()*sin_mo;
]]>
</evaluation>
</computed_vector>
<sequence>
<integrate algorithm="ARK45" cutoff="1e-3" tolerance="1e-5" interval="7.0e-1" steps="100000">
<samples>20 20 20 20 20 20</samples>
<operators>
<integration_vectors>evens</integration_vectors>
<![CDATA[
const real M = 2*m;
dhE_dt = -i*omega*M*hE - i*g*(r*r-1.0)*M*hE;
]]>
</operators>
<operators>
<integration_vectors>odds</integration_vectors>
<![CDATA[
const real M = 2*m+1.0;
dhO_dt = -i*omega*M*hO - i*g*(s*s-1.0)*M*hO;
]]>
</operators>
</integrate>
</sequence>
<output format="binary">
<sampling_group basis="r theta" initial_sample="yes">
<moments>WER</moments>
<dependencies>WignerEven</dependencies>
<![CDATA[
WER = WE;
]]>
</sampling_group>
<sampling_group basis="s theta" initial_sample="yes">
<moments>WOR</moments>
<dependencies>WignerOdd</dependencies>
<![CDATA[
WOR = WO;
]]>
</sampling_group>
<sampling_group basis="m r" initial_sample="yes">
<moments>hER hEI</moments>
<dependencies>evens</dependencies>
<![CDATA[
_SAMPLE_COMPLEX(hE);
]]>
</sampling_group>
<sampling_group basis="m s" initial_sample="yes">
<moments>hOR hOI</moments>
<dependencies>odds</dependencies>
<![CDATA[
_SAMPLE_COMPLEX(hO);
]]>
</sampling_group>
<sampling_group basis="m kr" initial_sample="yes">
<moments>hER hEI</moments>
<dependencies>evens</dependencies>
<![CDATA[
_SAMPLE_COMPLEX(hE);
]]>
</sampling_group>
<sampling_group basis="m ks" initial_sample="yes">
<moments>hOR hOI</moments>
<dependencies>odds</dependencies>
<![CDATA[
_SAMPLE_COMPLEX(hO);
]]>
</sampling_group>
</output>
</simulation>
|