1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
<testing>
<command_line>mpirun -n 1 ./hermitegauss_transform_2d_mpi_small</command_line>
<xsil_file name="hermitegauss_transform_2d_mpi_small.xsil" expected="hermitegauss_transform_2d_mpi_expected.xsil" absolute_tolerance="1e-8" relative_tolerance="1e-5" />
</testing>
<name>hermitegauss_transform_2d_mpi_small</name>
<author>Graham Dennis</author>
<description>
Solve the Schroedinger equation in 2D using the hermite-Gauss basis.
Checking that when the number of processes is of the same order as the number of grid points that things don't go awry
</description>
<features>
<benchmark />
<bing />
<validation kind="run-time" />
<globals>
<![CDATA[
const real M = 9.1e-31; // Mass of an electron
const real hbar = 1.05e-34;
const real omega = 2*M_PI*1e3;
const real offset = 1.0 * sqrt(hbar/(M*omega));
]]>
</globals>
</features>
<geometry>
<propagation_dimension> t </propagation_dimension>
<transverse_dimensions>
<dimension name="x" lattice="10" length_scale="sqrt(hbar/(M*omega))" transform="hermite-gauss" />
<dimension name="y" lattice="10" length_scale="sqrt(hbar/(M*omega))" transform="hermite-gauss" />
</transverse_dimensions>
</geometry>
<driver name="distributed-mpi" />
<vector name="main" initial_basis="x y" type="complex">
<components>
psi
</components>
<initialisation>
<![CDATA[
// initial state is the groundstate in the x axis, but shifted by offset
psi = pow(M*omega/(hbar*M_PI), 0.25) * exp(-0.5*(M*omega/hbar)*(x - offset)*(x - offset));
// and an expanded gaussian in the y axis
psi *= pow(M*omega/(hbar*M_PI), 0.25) * exp(-0.25*(M*omega/hbar)*y*y);
]]>
</initialisation>
</vector>
<computed_vector name="normalisation" dimensions="" type="real">
<components>N integral_y2</components>
<evaluation>
<dependencies>main</dependencies>
<![CDATA[
N = mod2(psi);
integral_y2 = mod2(psi)*y*y;
]]>
</evaluation>
</computed_vector>
<sequence>
<integrate algorithm="ARK45" tolerance="1e-6" interval="1e-3" steps="400">
<samples>10 1 100</samples>
<operators>
<operator kind="ip" constant="yes" basis="nx ny">
<operator_names>L</operator_names>
<![CDATA[
L = -i*(nx + ny + 1.0)*omega;
]]>
</operator>
<integration_vectors>main</integration_vectors>
<![CDATA[
dpsi_dt = L[psi];
]]>
</operators>
</integrate>
</sequence>
<output format="binary">
<sampling_group basis="x y" initial_sample="yes">
<moments>dens</moments>
<dependencies>main</dependencies>
<![CDATA[
dens = mod2(psi);
]]>
</sampling_group>
<sampling_group basis="nx ny" initial_sample="no">
<moments>dens</moments>
<dependencies>main</dependencies>
<![CDATA[
dens = mod2(psi);
]]>
</sampling_group>
<sampling_group basis="x(0) y(0)" initial_sample="yes">
<moments>mean_x mean_sigmay</moments>
<dependencies>main normalisation</dependencies>
<![CDATA[
mean_x = mod2(psi)*x/N;
mean_sigmay = sqrt(integral_y2/N);
]]>
</sampling_group>
</output>
</simulation>
|