1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
<testing>
<xsil_file name="bessel_transform_rectangular.xsil" expected="bessel_transform_rectangular_expected.xsil" absolute_tolerance="1e-6" relative_tolerance="1e-5" />
</testing>
<name>bessel_transform_rectangular</name>
<author>Graham Dennis</author>
<description>
Solve the wave equation on a disk of radius 1 utilising cylindrical symmetry
by using the Bessel function transform. The Bessel function transform implicitly
assumes Dirichlet boundary conditions at the edge of the disk.
</description>
<features>
<benchmark />
<bing />
<globals>
<![CDATA[
const real T = 10.0;
const real mass = 1e-3;
const real length = 1.0;
const real mu = mass/length;
]]>
</globals>
</features>
<geometry>
<propagation_dimension> t </propagation_dimension>
<transverse_dimensions>
<dimension name="x" lattice="100" spectral_lattice="50" domain="(0, 1)" transform="bessel" />
</transverse_dimensions>
</geometry>
<vector name="main" initial_basis="x" type="complex">
<components>
u uDot
</components>
<initialisation>
<![CDATA[
u = exp(-100.0*(x-0.25)*(x-0.25));
uDot = 0.0;
]]>
</initialisation>
</vector>
<sequence>
<integrate algorithm="ARK45" tolerance="1e-6" interval="8e-3">
<samples>100 73</samples>
<operators>
<operator kind="ex" constant="yes" fourier_space="kx">
<operator_names>L</operator_names>
<![CDATA[
L = -T*kx*kx/mu;
]]>
</operator>
<integration_vectors>main</integration_vectors>
<![CDATA[
du_dt = uDot;
duDot_dt = L[u];
]]>
</operators>
</integrate>
</sequence>
<output format="binary">
<sampling_group initial_sample="yes">
<dimension name="x" fourier_space="no" />
<moments>amp</moments>
<dependencies>main</dependencies>
<![CDATA[
amp = u.Re();
]]>
</sampling_group>
<sampling_group initial_sample="no">
<dimension name="x" fourier_space="yes" />
<moments>amp</moments>
<dependencies>main</dependencies>
<![CDATA[
amp = u.Re();
]]>
</sampling_group>
</output>
<info>
Script compiled with xpdeint version VERSION_PLACEHOLDER (SUBVERSION_REVISION_PLACEHOLDER)
See http://www.xmds.org for more information.
</info>
<XSIL Name="moment_group_1">
<Param Name="n_independent">2</Param>
<Array Name="variables" Type="Text">
<Dim>3</Dim>
<Stream><Metalink Format="Text" Delimiter=" \n"/>
t x amp
</Stream>
</Array>
<Array Name="data" Type="double">
<Dim>101</Dim>
<Dim>100</Dim>
<Dim>3</Dim>
<Stream><Metalink Format="Binary" UnsignedLong="uint64" precision="double" Type="Remote" Encoding="LittleEndian"/>
bessel_transform_rectangular_expected_mg0.dat
</Stream>
</Array>
</XSIL>
<XSIL Name="moment_group_2">
<Param Name="n_independent">2</Param>
<Array Name="variables" Type="Text">
<Dim>3</Dim>
<Stream><Metalink Format="Text" Delimiter=" \n"/>
t kx amp
</Stream>
</Array>
<Array Name="data" Type="double">
<Dim>73</Dim>
<Dim>50</Dim>
<Dim>3</Dim>
<Stream><Metalink Format="Binary" UnsignedLong="uint64" precision="double" Type="Remote" Encoding="LittleEndian"/>
bessel_transform_rectangular_expected_mg1.dat
</Stream>
</Array>
</XSIL>
</simulation>
|