1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
<testing>
<xsil_file name="initialisation_order.xsil" expected="initialisation_order_expected.xsil" absolute_tolerance="1e-7" relative_tolerance="1e-5" />
</testing>
<name>initialisation_order</name>
<author>Graham Dennis</author>
<description>
1D TW model of the uniform Peaks system. Groundstate finder.
Demonstrates a phase-separated BEC groundstate.
Note that the initialisation of the 'wavefunction' vector
depends on the 'potential' vector having already been evaluated.
</description>
<features>
<auto_vectorise />
<benchmark />
<fftw plan="exhaustive" />
<globals>
<![CDATA[
/* physical constants */
const double omegaz = 2*M_PI*55.0;
const double omegarho = 2*M_PI*1020.0;
const double hbar = 1.05457148e-34;
const double M = 4.0026032*1.66053886e-27;
const double scatteringLength = 7.51e-9;
const double Uint3 = 4.0*M_PI*hbar*hbar*scatteringLength/M;
const double Nparticles = 2.0e6;
const double mu = pow(15*Nparticles*Uint3*omegarho*omegarho*omegaz/(8.0*M_PI)*pow(M/2,3.0/2.0),2.0/5.0);
const double Uint = Uint3*5.0*omegarho*omegarho*M/(4.0*M_PI*mu);
const double Uint_hbar = Uint/hbar;
const complex miUint_hbar = -i*Uint_hbar;
const double otherScatteringLength = 5.56e-9;
const double kappa = otherScatteringLength/scatteringLength;
const double eta = 0.5;
double Delta;
const double hbar_M = hbar/M;
/* absorbing boundary constants */
const double absorbleft = 5.0e4;
const double absorbright = 5.0e4;
const double widthPerp = 5.0e-6;
]]>
</globals>
</features>
<geometry>
<propagation_dimension> t </propagation_dimension>
<transverse_dimensions>
<dimension name="z" lattice="256" domain="(-36e-5, 36e-5)" />
</transverse_dimensions>
</geometry>
<vector name="potential" initial_basis="z" type="complex">
<components>V</components>
<initialisation>
<![CDATA[
V = 0.5*M*omegaz*omegaz*z*z;
]]>
</initialisation>
</vector>
<vector name="wavefunction" initial_basis="z" type="complex">
<components>
phi1 phi0
</components>
<initialisation>
<dependencies>potential</dependencies>
<![CDATA[
phi1 = phi0 = 0.0;
if (eta*mu - V.re > 0.0) {
phi1 = sqrt((eta*mu - V.re)/Uint);
}
if ((1.0-eta)*mu - V.re > 0.0) {
phi0 = sqrt(((1.0-eta)*mu - V.re)/Uint);
}
]]>
</initialisation>
</vector>
<computed_vector name="normalisation" dimensions="" type="double">
<components>N1 N0</components>
<evaluation>
<dependencies>wavefunction</dependencies>
<![CDATA[
N1 = mod2(phi1);
N0 = mod2(phi0);
]]>
</evaluation>
</computed_vector>
<sequence>
<filter>
<dependencies>wavefunction normalisation</dependencies>
<![CDATA[
phi1 *= sqrt(eta*Nparticles/N1);
phi0 *= sqrt((1.0-eta)*Nparticles/N0);
]]>
</filter>
<integrate algorithm="RK4" interval="5.0e-4" steps="500">
<samples>50 50</samples>
<filters>
<filter>
<dependencies>wavefunction normalisation</dependencies>
<![CDATA[
phi1 *= sqrt(eta*Nparticles/N1);
phi0 *= sqrt((1.0-eta)*Nparticles/N0);
]]>
</filter>
</filters>
<operators>
<operator kind="ip" constant="yes">
<operator_names>T</operator_names>
<![CDATA[
T = -0.5*hbar/M*kz*kz;
]]>
</operator>
<integration_vectors>wavefunction</integration_vectors>
<dependencies>potential</dependencies>
<![CDATA[
dphi1_dt = T[phi1] - 1.0/hbar*(V + Uint*(mod2(phi1) + mod2(phi0)) - eta*mu)*phi1;
dphi0_dt = T[phi0] - 1.0/hbar*(V + Uint*(mod2(phi1) + kappa*mod2(phi0)) - (1.0-eta)*mu)*phi0;
]]>
</operators>
</integrate>
</sequence>
<output format="hdf5">
<sampling_group initial_sample="yes">
<dimension name="z" />
<moments>dens1 dens0</moments>
<dependencies>wavefunction</dependencies>
<![CDATA[
dens1 = mod2(phi1);
dens0 = mod2(phi0);
]]>
</sampling_group>
<sampling_group initial_sample="yes">
<dimension name="z" fourier_space="yes" />
<moments>dens1 dens0</moments>
<dependencies>wavefunction</dependencies>
<![CDATA[
dens1 = mod2(phi1);
dens0 = mod2(phi0);
]]>
</sampling_group>
</output>
<info>
Script compiled with xpdeint version VERSION_PLACEHOLDER (SUBVERSION_REVISION_PLACEHOLDER)
See http://www.xmds.org for more information.
</info>
<XSIL Name="moment_group_1">
<Param Name="n_independent">2</Param>
<Array Name="variables" Type="Text">
<Dim>4</Dim>
<Stream><Metalink Format="Text" Delimiter=" \n"/>
t z dens1 dens0
</Stream>
</Array>
<Array Name="data" Type="double">
<Dim>51</Dim>
<Dim>256</Dim>
<Dim>4</Dim>
<Stream><Metalink Format="HDF5" Type="Remote" Group="/1"/>
initialisation_order_expected.h5
</Stream>
</Array>
</XSIL>
<XSIL Name="moment_group_2">
<Param Name="n_independent">2</Param>
<Array Name="variables" Type="Text">
<Dim>4</Dim>
<Stream><Metalink Format="Text" Delimiter=" \n"/>
t kz dens1 dens0
</Stream>
</Array>
<Array Name="data" Type="double">
<Dim>51</Dim>
<Dim>256</Dim>
<Dim>4</Dim>
<Stream><Metalink Format="HDF5" Type="Remote" Group="/2"/>
initialisation_order_expected.h5
</Stream>
</Array>
</XSIL>
</simulation>
|