File: initialisation_order_expected.xsil

package info (click to toggle)
xmds2 2.2.3%2Bdfsg-15
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 53,904 kB
  • sloc: python: 54,093; cpp: 3,929; ansic: 1,463; makefile: 115; sh: 54
file content (190 lines) | stat: -rw-r--r-- 5,785 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
  <testing>
    <xsil_file name="initialisation_order.xsil" expected="initialisation_order_expected.xsil" absolute_tolerance="1e-7" relative_tolerance="1e-5" />
  </testing>
  
  <name>initialisation_order</name>
  <author>Graham Dennis</author>
  <description>
    1D TW model of the uniform Peaks system. Groundstate finder.
    Demonstrates a phase-separated BEC groundstate.
    Note that the initialisation of the 'wavefunction' vector
    depends on the 'potential' vector having already been evaluated.
  </description>
  
  <features>
    <auto_vectorise />
    <benchmark />
    <fftw plan="exhaustive" />
    <globals>
      <![CDATA[
      /* physical constants  */
       const double omegaz = 2*M_PI*55.0;
       const double omegarho = 2*M_PI*1020.0;
       const double hbar = 1.05457148e-34;
       const double M = 4.0026032*1.66053886e-27;
       const double scatteringLength = 7.51e-9;
       const double Uint3 = 4.0*M_PI*hbar*hbar*scatteringLength/M;
       const double Nparticles = 2.0e6;
       const double mu = pow(15*Nparticles*Uint3*omegarho*omegarho*omegaz/(8.0*M_PI)*pow(M/2,3.0/2.0),2.0/5.0);
       const double Uint = Uint3*5.0*omegarho*omegarho*M/(4.0*M_PI*mu);
       const double Uint_hbar = Uint/hbar;
       const complex miUint_hbar = -i*Uint_hbar;
       const double otherScatteringLength = 5.56e-9;
       const double kappa = otherScatteringLength/scatteringLength;
       const double eta = 0.5;
       double Delta;
       const double hbar_M = hbar/M;
       
       /* absorbing boundary constants */
        const double absorbleft = 5.0e4;
        const double absorbright = 5.0e4;
        const double widthPerp = 5.0e-6;
       
      ]]>
    </globals>
  </features>
  
  <geometry>
    <propagation_dimension> t </propagation_dimension>
    <transverse_dimensions>
      <dimension name="z" lattice="256"  domain="(-36e-5, 36e-5)" />
    </transverse_dimensions>
  </geometry>
  
  <vector name="potential" initial_basis="z" type="complex">
    <components>V</components>
    <initialisation>
      <![CDATA[
        V = 0.5*M*omegaz*omegaz*z*z;
      ]]>
    </initialisation>
  </vector>
  
  <vector name="wavefunction" initial_basis="z" type="complex">
    <components>
      phi1 phi0
    </components>
    <initialisation>
      <dependencies>potential</dependencies>
      <![CDATA[
        phi1 = phi0 = 0.0;
        if (eta*mu - V.re > 0.0) {
          phi1 = sqrt((eta*mu - V.re)/Uint);
        }
        if ((1.0-eta)*mu - V.re > 0.0) {
          phi0 = sqrt(((1.0-eta)*mu - V.re)/Uint);
        }
      ]]>
    </initialisation>
  </vector>
  
  <computed_vector name="normalisation" dimensions="" type="double">
    <components>N1 N0</components>
    <evaluation>
      <dependencies>wavefunction</dependencies>
      <![CDATA[
        N1 = mod2(phi1);
        N0 = mod2(phi0);
      ]]>
    </evaluation>
  </computed_vector>
  
  <sequence>
    <filter>
      <dependencies>wavefunction normalisation</dependencies>
      <![CDATA[
        phi1 *= sqrt(eta*Nparticles/N1);
        phi0 *= sqrt((1.0-eta)*Nparticles/N0);
      ]]>
    </filter>
    <integrate algorithm="RK4" interval="5.0e-4" steps="500">
      <samples>50 50</samples>
      <filters>
        <filter>
          <dependencies>wavefunction normalisation</dependencies>
          <![CDATA[
            phi1 *= sqrt(eta*Nparticles/N1);
            phi0 *= sqrt((1.0-eta)*Nparticles/N0);
          ]]>
        </filter>
      </filters>
      <operators>
        <operator kind="ip" constant="yes">
          <operator_names>T</operator_names>
          <![CDATA[
            T = -0.5*hbar/M*kz*kz;
          ]]>
        </operator>
        <integration_vectors>wavefunction</integration_vectors>
        <dependencies>potential</dependencies>
        <![CDATA[
          dphi1_dt = T[phi1] - 1.0/hbar*(V + Uint*(mod2(phi1) + mod2(phi0)) - eta*mu)*phi1;
          dphi0_dt = T[phi0] - 1.0/hbar*(V + Uint*(mod2(phi1) + kappa*mod2(phi0)) - (1.0-eta)*mu)*phi0;
        ]]>
      </operators>
    </integrate>
  </sequence>
  <output format="hdf5">
      <sampling_group initial_sample="yes">
        <dimension name="z" />
        <moments>dens1 dens0</moments>
        <dependencies>wavefunction</dependencies>
        <![CDATA[
          dens1 = mod2(phi1);
          dens0 = mod2(phi0);
        ]]>
      </sampling_group>
      <sampling_group initial_sample="yes">
        <dimension name="z" fourier_space="yes" />
        <moments>dens1 dens0</moments>
        <dependencies>wavefunction</dependencies>
        <![CDATA[
          dens1 = mod2(phi1);
          dens0 = mod2(phi0);
        ]]>
      </sampling_group>
  </output>

<info>
Script compiled with xpdeint version VERSION_PLACEHOLDER (SUBVERSION_REVISION_PLACEHOLDER)
See http://www.xmds.org for more information.
</info>

<XSIL Name="moment_group_1">
  <Param Name="n_independent">2</Param>
  <Array Name="variables" Type="Text">
    <Dim>4</Dim>
    <Stream><Metalink Format="Text" Delimiter=" \n"/>
t z dens1 dens0 
    </Stream>
  </Array>
  <Array Name="data" Type="double">
    <Dim>51</Dim>
    <Dim>256</Dim>
    <Dim>4</Dim>
    <Stream><Metalink Format="HDF5" Type="Remote" Group="/1"/>
initialisation_order_expected.h5
    </Stream>
  </Array>
</XSIL>

<XSIL Name="moment_group_2">
  <Param Name="n_independent">2</Param>
  <Array Name="variables" Type="Text">
    <Dim>4</Dim>
    <Stream><Metalink Format="Text" Delimiter=" \n"/>
t kz dens1 dens0 
    </Stream>
  </Array>
  <Array Name="data" Type="double">
    <Dim>51</Dim>
    <Dim>256</Dim>
    <Dim>4</Dim>
    <Stream><Metalink Format="HDF5" Type="Remote" Group="/2"/>
initialisation_order_expected.h5
    </Stream>
  </Array>
</XSIL>
</simulation>