1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
<testing>
<command_line>mpirun -n 1 ./eigenvalues</command_line>
<xsil_file name="eigenvalues_break.xsil" expected="../fast/eigenvalues_break_expected.xsil" absolute_tolerance="1e-6" relative_tolerance="1e-5" />
<xsil_file name="eigenvalues.xsil" expected="../fast/eigenvalues_expected.xsil" absolute_tolerance="1e-6" relative_tolerance="1e-5" />
</testing>
<name>eigenvalues</name>
<author>Graham Dennis</author>
<description>
1D TW model of the uniform Peaks system.
</description>
<features>
<auto_vectorise />
<benchmark />
<fftw plan="exhaustive" />
<globals>
<![CDATA[
/* physical constants */
const double omegaz = 2*M_PI*55.0;
const double omegarho = 2*M_PI*1020.0;
const double hbar = 1.05457148e-34;
const double M = 4.0026032*1.66053886e-27;
const double scatteringLength = 7.51e-9;
const double Uint3 = 4.0*M_PI*hbar*hbar*scatteringLength/M;
const double Nparticles = 2.0e6;
const double mu = pow(15*Nparticles*Uint3*omegarho*omegarho*omegaz/(8.0*M_PI)*pow(M/2,3.0/2.0),2.0/5.0);
const double Uint = Uint3*5.0*omegarho*omegarho*M/(4.0*M_PI*mu);
const double Uint_hbar = Uint/hbar;
const complex miUint_hbar = -i*Uint_hbar;
const double otherScatteringLength = 5.56e-9;
const double kappa = otherScatteringLength/scatteringLength;
double Delta;
const double hbar_M = hbar/M;
const double Omega = 2.0*M_PI*3e3;
double mu0 = hbar*1.7786e3*2.0*M_PI;
double nu = 6.649299328e3;//4.4046e4; // Hertz
]]>
</globals>
<validation kind="run-time" />
</features>
<driver name="distributed-mpi" />
<geometry>
<propagation_dimension> t </propagation_dimension>
<transverse_dimensions>
<dimension name="kz" lattice="32" domain="(0, 3e6)" transform="none"/>
<!-- <dimension name="kz" lattice="1024" domain="(1.3220e6, 1.3221e6)" /> -->
<dimension name="p" domain="(1, 4)" type="integer" aliases="q" />
</transverse_dimensions>
</geometry>
<vector name="wavefunction" dimensions="" type="complex">
<components>
phi1 phi0
</components>
<initialisation>
<![CDATA[
phi1 = sqrt(mu/Uint);
phi0 = 0.0;
]]>
</initialisation>
</vector>
<vector name="matrixterms" dimensions="kz p q" initial_basis="kz" type="complex">
<components>matrix</components>
<initialisation>
<![CDATA[
if (p == q) {
matrix = 1.0;
} else {
matrix = 0.0;
}
]]>
</initialisation>
</vector>
<computed_vector name="hamiltonian_matrix" dimensions="kz p q" type="complex">
<components>h_matrix</components>
<evaluation>
<dependencies>wavefunction</dependencies>
<![CDATA[
const double kineticEnergy = 0.5*hbar*hbar*kz*kz/M;
if (p == 1 && q == 1) h_matrix = Uint*mod2(phi1)+kineticEnergy-mu0;
if (p == 1 && q == 2) h_matrix = Uint*phi1*phi1;
if (p == 1 && q == 3) h_matrix = Uint*phi1*conj(phi0)+hbar*Omega;
if (p == 1 && q == 4) h_matrix = Uint*phi1*phi0;
if (p == 2 && q == 1) h_matrix = -Uint*conj(phi1*phi1);
if (p == 2 && q == 2) h_matrix = -Uint*mod2(phi1)-kineticEnergy+mu0;
if (p == 2 && q == 3) h_matrix = -Uint*conj(phi1 * phi0);
if (p == 2 && q == 4) h_matrix = -Uint*conj(phi1)*phi0 - hbar*Omega;
if (p == 3 && q == 1) h_matrix = Uint*conj(phi1)*phi0 + hbar*Omega;
if (p == 3 && q == 2) h_matrix = Uint*phi0*phi1;
if (p == 3 && q == 3) h_matrix = Uint*(2.0*kappa-1.0)*mod2(phi0)-mu0+kineticEnergy;
if (p == 3 && q == 4) h_matrix = Uint*kappa*phi0*phi0;
if (p == 4 && q == 1) h_matrix = -Uint*conj(phi0*phi1);
if (p == 4 && q == 2) h_matrix = -Uint*phi1*conj(phi0)-hbar*Omega;
if (p == 4 && q == 3) h_matrix = -Uint*kappa*conj(phi0*phi0);
if (p == 4 && q == 4) h_matrix = -Uint*(2.0*kappa-1.0)*mod2(phi0)-kineticEnergy+mu0;
h_matrix *= -i/hbar;
]]>
</evaluation>
</computed_vector>
<sequence>
<integrate algorithm="ARK89" interval="1.0/nu" tolerance="1e-8">
<samples>20 20</samples>
<operators dimensions="">
<integration_vectors>wavefunction</integration_vectors>
<![CDATA[
dphi1_dt = - i/hbar*( - mu0)*phi1 -i*Omega*phi0;
dphi0_dt = - i/hbar*( - Uint*(1.0-kappa)*mod2(phi0) - mu0)*phi0 -i*Omega*phi1;
]]>
</operators>
<operators dimensions="kz p q">
<integration_vectors>matrixterms</integration_vectors>
<dependencies>wavefunction hamiltonian_matrix</dependencies>
<![CDATA[
dmatrix_dt = 0.0;
for (long pp = 1; pp <= 4; pp++) {
dmatrix_dt += h_matrix(q=> pp)*matrix(p=> pp);
}
]]>
</operators>
</integrate>
<breakpoint filename="eigenvalues_break.xsil" format="hdf5">
<dependencies>matrixterms</dependencies>
</breakpoint>
</sequence>
<output format="hdf5">
<sampling_group initial_sample="yes">
<moments>phi1R phi1I phi0R phi0I</moments>
<dependencies>wavefunction</dependencies>
<![CDATA[
_SAMPLE_COMPLEX(phi1); _SAMPLE_COMPLEX(phi0);
]]>
</sampling_group>
<sampling_group initial_sample="yes" basis="kz p q">
<moments>matrixR matrixI</moments>
<dependencies>matrixterms</dependencies>
<![CDATA[
_SAMPLE_COMPLEX(matrix);
]]>
</sampling_group>
</output>
</simulation>
|