1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
<testing>
<command_line>mpirun -n 2 ./kubo_integer_dimensions_mpi</command_line>
<xsil_file name="kubo_integer_dimensions_mpi.xsil" expected="kubo_integer_dimensions_mpi_expected.xsil" absolute_tolerance="5e-2" relative_tolerance="1e-1" />
<xsil_file name="kubo_integer_dimensions_mpi_break.xsil" expected="kubo_integer_dimensions_mpi_break_expected.xsil" absolute_tolerance="5e-2" relative_tolerance="1e-1" />
</testing>
<name>kubo_integer_dimensions_mpi</name>
<author>Graham Dennis</author>
<description>
Example Kubo oscillator simulation
</description>
<geometry>
<propagation_dimension> t </propagation_dimension>
<transverse_dimensions>
<dimension name="j" type="integer" lattice="1024" domain="(1, 1024)" />
</transverse_dimensions>
</geometry>
<driver name="distributed-mpi" />
<vector name="main" type="complex">
<components>
z
</components>
<initialisation>
<![CDATA[
z = 1.0;
]]>
</initialisation>
</vector>
<noise_vector name="noise" kind="wiener" type="real" seed="157 9348 234">
<components>n_1</components>
</noise_vector>
<sequence>
<integrate algorithm="RK9" interval="10" steps="1000" tolerance="1e-8">
<samples>500 10</samples>
<operators>
<integration_vectors>main</integration_vectors>
<dependencies>noise</dependencies>
<![CDATA[
dz_dt(j => j) = i*z*n_1;
]]>
</operators>
</integrate>
<breakpoint filename="kubo_integer_dimensions_mpi_break.xsil">
<dependencies>main</dependencies>
</breakpoint>
</sequence>
<output format="binary">
<sampling_group basis="j(0)" initial_sample="yes">
<moments>zR zI</moments>
<dependencies>main</dependencies>
<![CDATA[
zR = z.Re()/_lattice_j;
zI = z.Im()/_lattice_j;
]]>
</sampling_group>
<sampling_group basis="j" initial_sample="yes">
<moments>zR zI</moments>
<dependencies>main</dependencies>
<![CDATA[
_SAMPLE_COMPLEX(z);
zR = z.Re();
zI = z.Im();
]]>
</sampling_group>
</output>
</simulation>
|