1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
<testing>
<command_line>mpirun -n 1 ./partial_integration_computed_vector</command_line>
<xsil_file name="partial_integration_computed_vector.xsil" expected="../fast/bessel_cosine_groundstate_expected.xsil" absolute_tolerance="1e-7" relative_tolerance="1e-5" />
<xsil_file name="partial_integration_computed_vector_breakpoint.xsil" expected="../fast/bessel_cosine_groundstate_breakpoint_expected.xsil" absolute_tolerance="1e0" relative_tolerance="1e-5" />
</testing>
<name>partial_integration_computed_vector</name>
<author>Graham Dennis</author>
<description>
Calculate the 3D ground state of a Rubidium BEC in a harmonic magnetic trap assuming
cylindrical symmetry about the z axis and reflection symmetry about z=0.
This permits us to use the cylindrical bessel functions to expand the solution transverse
to z and a cosine series to expand the solution along z.
This testcase tests using both Fourier transforms and Matrix transforms in a single simulation.
</description>
<features>
<auto_vectorise />
<benchmark />
<bing />
<globals>
<![CDATA[
const real omegaz = 2*M_PI*20;
const real omegarho = 2*M_PI*200;
const real hbar = 1.05457148e-34;
const real M = 1.409539200000000e-25;
const real g = 9.8;
const real scatteringLength = 5.57e-9;
const real Uint = 4.0*M_PI*hbar*hbar*scatteringLength/M;
const real Nparticles = 5.0e5;
/* offset constants */
const real EnergyOffset = pow(15.0*Nparticles*Uint*omegaz*omegarho*omegarho/(8*M_PI), 2.0/5.0)
* pow(M/2.0, 3.0/5.0);
]]>
</globals>
</features>
<geometry>
<propagation_dimension> t </propagation_dimension>
<transverse_dimensions>
<dimension name="z" lattice="32" domain="(0.0, 1.0e-4)" transform="dct" volume_prefactor="2.0" />
<dimension name="r" lattice="32" domain="(0.0, 1.0e-5)" transform="bessel" volume_prefactor="2.0*M_PI"/>
</transverse_dimensions>
</geometry>
<driver name="distributed-mpi" />
<vector name="potential" type="complex">
<components>
V1
</components>
<initialisation>
<![CDATA[
real Vtrap = 0.5*M*(omegarho*omegarho*r*r + omegaz*omegaz*z*z);
V1 = -i/hbar*(Vtrap - EnergyOffset);
]]>
</initialisation>
</vector>
<vector name="wavefunction" type="complex">
<components>
phi
</components>
<initialisation>
<![CDATA[
if ((abs(r) < 0.9e-5) && abs(z) < 0.9e-4) {
phi = 1.0; //sqrt(Nparticles/2.0e-5);
// This will be automatically normalised later
} else {
phi = 0.0;
}
]]>
</initialisation>
</vector>
<computed_vector name="partial_r" dimensions="r" type="real">
<components>Nr</components>
<evaluation>
<dependencies>wavefunction</dependencies>
<![CDATA[
Nr = mod2(phi);
]]>
</evaluation>
</computed_vector>
<computed_vector name="partial_z" dimensions="z" type="real">
<components>Nz</components>
<evaluation>
<dependencies>wavefunction</dependencies>
<![CDATA[
Nz = mod2(phi);
]]>
</evaluation>
</computed_vector>
<computed_vector name="norm_r" dimensions="" type="real">
<components>NcalcR</components>
<evaluation>
<dependencies>partial_r</dependencies>
<![CDATA[
NcalcR = Nr;
]]>
</evaluation>
</computed_vector>
<computed_vector name="norm_z" dimensions="" type="real">
<components>NcalcZ</components>
<evaluation>
<dependencies>partial_z</dependencies>
<![CDATA[
NcalcZ = Nz;
]]>
</evaluation>
</computed_vector>
<computed_vector name="normalisation" dimensions="" type="real">
<components>
Ncalc
</components>
<evaluation>
<dependencies>wavefunction</dependencies>
<![CDATA[
// Calculate the current normalisation of the wave function.
Ncalc = mod2(phi);
]]>
</evaluation>
</computed_vector>
<sequence>
<integrate algorithm="RK4" interval="1e-4" steps="1000">
<samples>100</samples>
<filters>
<filter>
<dependencies>wavefunction normalisation norm_r norm_z</dependencies>
<![CDATA[
// Correct normalisation of the wavefunction
real mean_number = (Ncalc + NcalcR + NcalcZ)/3.0;
phi *= sqrt(Nparticles/mean_number);
]]>
</filter>
</filters>
<operators>
<operator kind="ip" constant="yes">
<operator_names>T</operator_names>
<![CDATA[
T = -0.5*hbar/M*(kr*kr + kz*kz);
]]>
</operator>
<integration_vectors>wavefunction</integration_vectors>
<dependencies>potential</dependencies>
<![CDATA[
dphi_dt = T[phi] - (i*V1 + Uint/hbar*mod2(phi))*phi;
]]>
</operators>
</integrate>
<breakpoint filename="partial_integration_computed_vector_breakpoint.xsil" format="hdf5">
<dependencies>wavefunction</dependencies>
</breakpoint>
</sequence>
<output format="binary">
<sampling_group basis="r z" initial_sample="no">
<moments>norm_dens</moments>
<dependencies>wavefunction normalisation norm_r norm_z</dependencies>
<![CDATA[
real mean_number = (Ncalc + NcalcR + NcalcZ)/3.0;
norm_dens = mod2(phi)/mean_number;
]]>
</sampling_group>
</output>
</simulation>
|