1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
<testing>
<arguments>--latticesize 128</arguments>
<xsil_file name="runtime_lattice_diffusion_dst.xsil" expected="../transforms/diffusion_dst_expected.xsil" absolute_tolerance="1e-7" relative_tolerance="1e-5" />
</testing>
<name>runtime_lattice_diffusion_dst</name>
<author>Graham Dennis</author>
<description>
Simple one-dimensional diffusion solved using a Discrete Sine Transform (odd boundary conditions at both ends)
Odd boundary conditions essentially mimics zero dirichlet boundary conditions for linear problems.
</description>
<features>
<benchmark />
<error_check />
<bing />
<fftw plan="exhaustive" />
<validation kind="run-time"/>
<arguments>
<argument name="latticesize" type="integer" default_value="70"/>
</arguments>
</features>
<geometry>
<propagation_dimension> t </propagation_dimension>
<transverse_dimensions>
<dimension name="y" lattice="latticesize" domain="(-1.0, 1.0)" transform="dst" />
</transverse_dimensions>
</geometry>
<vector name="main" initial_basis="y" type="real">
<components>
phi
</components>
<initialisation>
<![CDATA[
phi = exp(-3*y*y);
]]>
</initialisation>
</vector>
<sequence>
<integrate algorithm="ARK45" interval="20.0" steps="2400" tolerance="1e-5">
<samples>48</samples>
<operators>
<operator kind="ip" constant="yes" basis="ky">
<operator_names>L</operator_names>
<![CDATA[
L = -0.02*ky*ky;
]]>
</operator>
<integration_vectors>main</integration_vectors>
<![CDATA[
dphi_dt = L[phi];
]]>
</operators>
</integrate>
</sequence>
<output format="binary">
<sampling_group basis="y" initial_sample="yes">
<moments>dens</moments>
<dependencies>main</dependencies>
<![CDATA[
dens = mod2(phi);
]]>
</sampling_group>
</output>
</simulation>
|