1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
#!/usr/bin/env python3
# encoding: utf-8
"""
_BesselTransform.py
Created by Graham Dennis on 2013-11-26.
Copyright (c) 2013, Graham Dennis
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
from xpdeint.Features.Transforms.MMT import MMT
from xpdeint.Features.Transforms.BesselBasis import BesselBasis
from xpdeint.Geometry.BesselDimensionRepresentation import BesselDimensionRepresentation
from xpdeint.Geometry.BesselNeumannDimensionRepresentation import BesselNeumannDimensionRepresentation
from xpdeint.Geometry.SphericalBesselDimensionRepresentation import SphericalBesselDimensionRepresentation
from xpdeint.ParserException import ParserException, error_missing_python_library
# We don't directly import mpmath so that mpmath isn't a requirement for xpdeint
# unless you use MMT's.
mpmath = None
# Again, don't directly import numpy
numpy = None
scipy = None
def require_mpmath():
global mpmath
if not mpmath:
try:
import mpmath
except ImportError:
error_missing_python_library("mpmath")
if not hasattr(mpmath, 'besselj'):
mpmath.besselj = mpmath.jn
mpmath.mp.prec = 64
def require_numpy():
global numpy
if not numpy:
try:
import numpy
except ImportError:
error_missing_python_library("numpy")
def require_scipy():
require_numpy()
global scipy
if not scipy:
try:
import scipy
import scipy.special
import scipy.optimize
except ImportError:
error_missing_python_library("scipy")
def besselJZeros(m, a, b):
require_mpmath()
if not hasattr(mpmath, 'besseljzero'):
besseljn = lambda x: mpmath.besselj(m, x)
results = [mpmath.findroot(besseljn, mpmath.pi*(kp - 1./4 + 0.5*m)) for kp in range(a, b+1)]
else:
results = [mpmath.besseljzero(m, i) for i in range(a, b+1)]
# Check that we haven't found double roots or missed a root. All roots should be separated by approximately pi
assert all([0.6*mpmath.pi < (b - a) < 1.4*mpmath.pi for a, b in zip(results[:-1], results[1:])]), "Separation of Bessel zeros was incorrect."
return results
def besselJPrimeZeros(m, a, b):
require_mpmath()
results = [mpmath.besseljzero(m, i, derivative=1) for i in range(a, b+1)]
return results
def besselNeumannMatrix(m, besseljzeros, besselValues, S):
require_scipy()
N = len(besseljzeros)
matrix = numpy.zeros([N, N])
for i in range(N):
for j in range(N):
matrix[i,j] = (2.0 / S) * scipy.special.jn(m, besseljzeros[i] * besseljzeros[j] / S) \
/ (besselValues[i] * besselValues[j])
return matrix
def besselNeumannSFactor(m, besseljzeros):
require_scipy()
besseljzeros_for_matrix = besseljzeros[:-1]
N = len(besseljzeros_for_matrix)
print("Computing the Bessel-Neumann transform S factor for lattice size %i (this will be performed once and saved for each lattice size)..." % (N))
besselValues = []
for i in range(N):
x = numpy.abs(scipy.special.jn(m, besseljzeros[i]))
if m > 0:
x *= numpy.sqrt(1.0 - m*m / (besseljzeros[i] * besseljzeros[i]))
besselValues.append(x)
def f(S):
matrix = besselNeumannMatrix(m, besseljzeros_for_matrix, besselValues, S)
determinant = numpy.linalg.det(matrix)
result = numpy.abs(determinant) - 1.0
return result
S, results = scipy.optimize.brentq(f, besseljzeros[-2], besseljzeros[-1], full_output=True)
return S
class _BesselTransform(MMT):
transformName = 'BesselTransform'
def __init__(self, *args, **KWs):
MMT.__init__(self, *args, **KWs)
dataCache = self.getVar('dataCache')
self.besselJZeroCache = dataCache.setdefault('besselJZeros', {})
self.besselJPrimeZeroCache = dataCache.setdefault('besselJPrimeZeros', {})
self.besselNeumannSCache = dataCache.setdefault('besselNeumannSFactor', {})
def newDimension(self, name, lattice, minimum, maximum,
parent, transformName, aliases = set(),
spectralLattice = None,
type = 'real', volumePrefactor = None,
xmlElement = None):
assert type == 'real'
assert transformName in ['bessel', 'spherical-bessel', 'bessel-neumann']
if not spectralLattice:
spectralLattice = lattice
dim = super(_BesselTransform, self).newDimension(name, max(lattice, spectralLattice), minimum, maximum,
parent, transformName, aliases,
type, volumePrefactor, xmlElement)
self.basisMap[dim.name] = transformName # Needs to be constructed basis here
# Bessel functions
order = 0
if xmlElement.hasAttribute('order'):
features = self.getVar('features')
orderString = xmlElement.getAttribute('order')
try:
order = int(orderString)
except ValueError:
raise ParserException(xmlElement, "Cannot understand '%s' as a meaningful order. "
"Order values must be non-negative integers." \
% xmlElement.getAttribute('order'))
else:
if order < 0:
raise ParserException(xmlElement, "The 'order' attribute for Bessel transforms must be non-negative integers.")
orderOffset = 0
dimRepClass = BesselDimensionRepresentation
if transformName == 'bessel-neumann':
weightOrder = order
dimRepClass = BesselNeumannDimensionRepresentation
else:
weightOrder = order + 1
if transformName == 'spherical-bessel':
dimRepClass = SphericalBesselDimensionRepresentation
if not self.hasattr('uselib'):
self.uselib = []
self.uselib.append('gsl')
orderOffset = 0.5
basis = BesselBasis(parent = self, **self.argumentsToTemplateConstructors)
self.basisMap[dim.name] = dict(
globalsFunction = self.globalsForDim,
order = order,
orderOffset = orderOffset,
lattice = lattice,
transformations = dict([
((name, 'k' + name), BesselBasis(parent = self, **self.argumentsToTemplateConstructors))
])
)
if not float(minimum) == 0.0:
raise ParserException(xmlElement, "The domain for Bessel transform dimensions must begin at 0.")
# Real space representation
xspace = dimRepClass(name = name, type = type, runtimeLattice = lattice,
stepSizeArray = True, parent = dim,
tag = self.coordinateSpaceTag,
_maximum = maximum, _order = order, _weightOrder = weightOrder,
**self.argumentsToTemplateConstructors)
dim.addRepresentation(xspace)
# Spectral space representation
kspace = dimRepClass(name = 'k' + name, type = type, runtimeLattice = spectralLattice,
stepSizeArray = True, parent = dim,
_maximum = '(_besseljS_%(name)s/((real)%(maximum)s))' % locals(),
_order = order, _weightOrder = weightOrder,
reductionMethod = dimRepClass.ReductionMethod.fixedStep,
tag = self.spectralSpaceTag,
**self.argumentsToTemplateConstructors)
dim.addRepresentation(kspace)
return dim
def besselJZeros(self, m, k):
if not m in self.besselJZeroCache:
self.besselJZeroCache[m] = besselJZeros(m, 1, k)
else:
if len(self.besselJZeroCache[m]) < k:
self.besselJZeroCache[m].extend(besselJZeros(m, len(self.besselJZeroCache[m])+1, k))
return self.besselJZeroCache[m][:k]
def besselJPrimeZeros(self, m, k):
if not m in self.besselJPrimeZeroCache:
self.besselJPrimeZeroCache[m] = besselJPrimeZeros(m, 1, k)
else:
if len(self.besselJPrimeZeroCache[m]) < k:
self.besselJPrimeZeroCache[m].extend(besselJPrimeZeros(m, len(self.besselJPrimeZeroCache[m])+1, k))
return self.besselJPrimeZeroCache[m][:k]
def besselNeumannSFactor(self, m, k):
require_numpy()
if not (m, k) in self.besselNeumannSCache:
zeros = list(map(numpy.double, self.besselJPrimeZeros(m, k+1)))
S = besselNeumannSFactor(m, zeros)
self.besselNeumannSCache[(m, k)] = float(S)
return self.besselNeumannSCache[(m, k)]
|