1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
#!/usr/bin/env python3
# encoding: utf-8
"""
_FourierTransform.py
Created by Graham Dennis on 2008-07-30.
Copyright (c) 2008-2012, Graham Dennis
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
from xpdeint.Features.Transforms._Transform import _Transform
from xpdeint.Geometry.DimensionRepresentation import DimensionRepresentation
from xpdeint.Geometry.UniformDimensionRepresentation import UniformDimensionRepresentation
from xpdeint.Geometry.SplitUniformDimensionRepresentation import SplitUniformDimensionRepresentation
from xpdeint.Utilities import lazy_property
import math, operator
from itertools import groupby
from functools import reduce
class _FourierTransformFFTW3 (_Transform):
transformName = 'FourierTransform'
fftwSuffix = ''
coordinateSpaceTag = DimensionRepresentation.registerTag('FFTW coordinate space', parent = 'coordinate')
fourierSpaceTag = DimensionRepresentation.registerTag('FFTW Fourier space', parent = 'spectral')
def __init__(self, *args, **KWs):
_Transform.__init__(self, *args, **KWs)
self.transformNameMap = {}
@lazy_property
def fftwPrefix(self):
precision = self.getVar('precision')
return {'double': 'fftw', 'single': 'fftwf'}[precision]
@lazy_property
def fftwLibVersionName(self):
return {'fftw': 'fftw3', 'fftwf': 'fftw3f'}[self.fftwPrefix]
@lazy_property
def wisdomExtension(self):
result = '.' + self.fftwLibVersionName
if self.fftwSuffix:
result += '_' + self.fftwSuffix
return result
@lazy_property
def uselib(self):
result = [self.fftwLibVersionName]
if self.fftwSuffix:
result.append(self.fftwLibVersionName + '_' + self.fftwSuffix)
return result
def newDimension(self, name, lattice, minimum, maximum,
parent, transformName, aliases = set(),
spectralLattice = None,
type = 'real', volumePrefactor = None,
xmlElement = None):
assert type == 'real'
assert transformName in ['dft', 'dct', 'dst']
dim = super(_FourierTransformFFTW3, self).newDimension(name, lattice, minimum, maximum,
parent, transformName, aliases,
type, volumePrefactor, xmlElement)
self.transformNameMap[dim.name] = transformName
if transformName == 'dft':
# x-space representation
xspace = UniformDimensionRepresentation(name = name, type = type, runtimeLattice = lattice,
_minimum = minimum, _maximum = maximum, parent = dim,
tag = self.coordinateSpaceTag,
**self.argumentsToTemplateConstructors)
# kspace representation
kspace = SplitUniformDimensionRepresentation(
name = 'k' + name, type = type, runtimeLattice = lattice,
_range = '%s - %s' % (xspace.maximum, xspace.minimum),
parent = dim, tag = self.fourierSpaceTag,
reductionMethod = SplitUniformDimensionRepresentation.ReductionMethod.fixedStep,
**self.argumentsToTemplateConstructors
)
else:
# x-space representation
stepSize = '((real)%(maximum)s - %(minimum)s)/(%(lattice)s)' % locals()
xspace = UniformDimensionRepresentation(
name = name, type = type, runtimeLattice = lattice,
_stepSize = stepSize, tag = self.coordinateSpaceTag,
parent = dim, **self.argumentsToTemplateConstructors
)
# Modify the minimum and maximum values to deal with the 0.5*stepSize offset
xspace._minimum = '%s + 0.5*%s' % (minimum, xspace.stepSize)
xspace._maximum = '%s + 0.5*%s' % (maximum, xspace.stepSize)
if transformName == 'dct':
# kspace representation
kspace = UniformDimensionRepresentation(
name = 'k' + name, type = type, runtimeLattice = lattice,
_minimum = '0.0', _stepSize = '(M_PI/(%(maximum)s - %(minimum)s))' % locals(),
tag = self.fourierSpaceTag,
reductionMethod = UniformDimensionRepresentation.ReductionMethod.fixedStep,
parent = dim, **self.argumentsToTemplateConstructors
)
kspace._maximum = '%s * %s' % (kspace.stepSize, kspace.globalLattice)
else:
kspace = UniformDimensionRepresentation(
name = 'k' + name, type = type, runtimeLattice = lattice,
_stepSize = '(M_PI/(%(maximum)s - %(minimum)s))' % locals(),
tag = self.fourierSpaceTag,
reductionMethod = UniformDimensionRepresentation.ReductionMethod.fixedStep,
parent = dim, **self.argumentsToTemplateConstructors
)
kspace._minimum = '%s' % kspace.stepSize
kspace._maximum = '%s * (%s + 1)' % (kspace.stepSize, kspace.globalLattice)
dim.addRepresentation(xspace)
dim.addRepresentation(kspace)
return dim
def r2rKindForDimensionAndDirection(self, dim, direction):
dimName = dim.name if not isinstance(dim, basestring) else dim
transformName = self.transformNameMap[dimName]
return {'dct': {'forward': 'FFTW_REDFT10', 'backward': 'FFTW_REDFT01'},
'dst': {'forward': 'FFTW_RODFT10', 'backward': 'FFTW_RODFT01'}}[transformName][direction]
def fftCost(self, dimNames):
geometry = self.getVar('geometry')
untransformedDimReps = dict([(dimName, geometry.dimensionWithName(dimName).representations[0]) for dimName in dimNames])
cost = sum([int(math.ceil(math.log(untransformedDimReps[dimName].latticeEstimate))) for dimName in dimNames], 0)
cost *= reduce(operator.mul, [untransformedDimReps[dimName].latticeEstimate for dimName in dimNames], 1)
return cost
@staticmethod
def scaleFactorForDimReps(dimReps):
return ' * '.join(['_inverse_sqrt_2pi * _d' + dimRepName for dimRepName in dimReps])
def availableTransformations(self):
results = []
geometry = self.getVar('geometry')
sortedDimNames = [(geometry.indexOfDimensionName(dimName), dimName) for dimName in self.transformNameMap]
sortedDimNames.sort()
sortedDimNames = [o[1] for o in sortedDimNames]
transformFunctions = dict(
geometryDependent = True,
transformFunction = self.transformFunction,
)
for dimName in sortedDimNames:
dimReps = [rep for rep in geometry.dimensionWithName(dimName).representations if not rep.hasLocalOffset]
results.append(dict(
transformations = [tuple(rep.name for rep in dimReps)],
cost = self.fftCost([dimName]),
forwardScale = self.scaleFactorForDimReps([dimReps[0].name]),
backwardScale = self.scaleFactorForDimReps([dimReps[1].name]),
requiresScaling = True,
transformType = 'complex' if self.transformNameMap[dimName] == 'dft' else 'real',
**transformFunctions
))
if self.hasattr('mpiDimensions'):
for dim in [dim for dim in self.mpiDimensions if dim.name in sortedDimNames]:
sortedDimNames.remove(dim.name)
c2cDimNames = [dimName for dimName in sortedDimNames if self.transformNameMap[dimName] == 'dft']
r2rDimNames = [dimName for dimName in sortedDimNames if self.transformNameMap[dimName] in ['dct', 'dst']]
untransformedDimReps = dict([(dimName, geometry.dimensionWithName(dimName).representations[0]) for dimName in sortedDimNames])
transformedDimReps = dict([(dimName, geometry.dimensionWithName(dimName).representations[1]) for dimName in sortedDimNames])
# Create optimised forward/backward transforms
keyFunc = lambda x: {'dft': 'complex', 'dct': 'real', 'dst': 'real'}[self.transformNameMap[x]]
for transformType, dimNames in groupby(sortedDimNames, keyFunc):
dimNames = list(dimNames)
if len(dimNames) <= 1: continue
cost = self.fftCost(dimNames)
untransformedBasis = tuple(untransformedDimReps[dimName].name for dimName in dimNames)
transformedBasis = tuple(transformedDimReps[dimName].name for dimName in dimNames)
bases = tuple([untransformedBasis, transformedBasis])
results.append(dict(
transformations = [bases],
cost = cost,
forwardScale = self.scaleFactorForDimReps(untransformedBasis),
backwardScale = self.scaleFactorForDimReps(transformedBasis),
requiresScaling = True,
transformType = transformType,
**transformFunctions
))
final_transforms = []
for transform in results:
final_transforms.append(transform.copy())
transform['outOfPlace'] = True
final_transforms.append(transform)
return final_transforms
|