1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
#!/usr/bin/env python3
# encoding: utf-8
"""
_TransformMultiplexer.py
Created by Graham Dennis on 2008-12-23.
Copyright (c) 2008-2012, Graham Dennis
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
from xpdeint.Features._Feature import _Feature
from xpdeint.Utilities import combinations, GeneralisedBidirectionalSearch
from xpdeint.Function import Function
from xpdeint.Vectors.VectorElement import VectorElement
from xpdeint.ParserException import ParserException
import operator
import collections
from functools import reduce
class _TransformMultiplexer (_Feature):
featureName = 'TransformMultiplexer'
transformClasses = dict()
def __init__(self, *args, **KWs):
_Feature.__init__(self, *args, **KWs)
self.transforms = set()
self.availableTransformations = []
self.neededTransformations = []
self.transformations = []
def transformWithName(self, name):
if not name in self.transformClasses:
return None
cls = self.transformClasses[name]
transformWithClass = [t for t in self.transforms if isinstance(t, cls)]
assert 0 <= len(transformWithClass) <= 1
if transformWithClass:
return transformWithClass[0]
else:
return cls(parent = self.simulation, **self.argumentsToTemplateConstructors)
def __getattribute__(self, name):
"""
Call through to all methods on the child transforms. This should only be used for
the 'insertCodeForFeatures' functions. We don't want this to happen for 'includes', etc.
This is prevented from occuring because all of these methods are defined on `_ScriptElement`.
"""
# As we are customising attribute access in this method, attempts to access attributes directly
# would lead to infinite recursion (bad), so we must access variables specially
# If the attribute isn't one that we are doing a special proxy for, then it perform as per usual.
if not name in ['mainBegin', 'mainEnd']:
return _Feature.__getattribute__(self, name)
attributes = []
# If we have the attribute, then we go first
try:
attributes.append(_Feature.__getattribute__(self, name))
except AttributeError:
pass
# Then we add any child attributes
transforms = _Feature.__getattribute__(self, 'transforms')
attributes.extend([getattr(t, name) for t in transforms if t.hasattr(name)])
# If neither ourself nor any of our children have this attribute, then we need to raise an AttributeError
# the easiest way to do this is to just call the default implementation which will do this.
# We want to do the same thing
if not attributes or not all([callable(attr) for attr in attributes]):
return _Feature.__getattribute__(self, name)
# If there's only one, we don't need to multiplex.
if len(attributes) == 1:
return attributes[0]
# Create a multiplexing function and return it.
def multiplexingFunction(*args, **KWs):
results = [attr(*args, **KWs) for attr in attributes]
if name == 'mainBegin':
results.reverse()
return ''.join([result for result in results if result is not None])
return multiplexingFunction
def preflight(self):
super(_TransformMultiplexer, self).preflight()
for transform in self.transforms:
if hasattr(transform, 'availableTransformations'):
for transformation in transform.availableTransformations():
transformation.setdefault('owner', transform)
self.availableTransformations.append(transformation)
# We need to add a few transforms of our own.
# Out-of-place copy
self.oopCopy = dict(
owner = self,
transformations = [tuple()],
cost = 1,
outOfPlace = True,
transformFunction = self.oopCopyTransformFunction,
description = 'Out-of-place copy',
)
self.availableTransformations.append(self.oopCopy)
# In-place multiply
self.ipMultiply = dict(
owner = self,
transformations = [tuple()],
cost = 1,
scaling = True,
transformFunction = self.ipMultiplyTransformFunction,
description = 'In-place multiply',
)
# Out-of-place multiply
self.oopMultiply = dict(
owner = self,
transformations = [tuple()],
cost = 2,
outOfPlace = True,
scaling = True,
transformFunction = self.oopMultiplyTransformFunction,
description = 'Out-of-place multiply',
)
def buildTransformMap(self):
# The mighty plan is to do the following for each vector:
# 1. Convert all required spaces to the new-style spaces
def transformedBasis(basis, transformationPair):
"""
This function determines if `basis` can be transformed by the transform represented
by `transformPair`. If `basis` can be transformed, then it returns the transformed basis,
the matched part of the basis, and the components of the basis before and after the match.
"""
if not transformationPair: return basis, (basis, tuple(), tuple())
if not isinstance(basis, tuple): basis = tuple([basis])
for sourceBasis, destBasis in [transformationPair, reversed(transformationPair)]:
# Optimisation: If it's just a single-dimension transform, do it the fast way
if not isinstance(sourceBasis, tuple):
if not sourceBasis in basis: continue
basis = list(basis)
offset = basis.index(sourceBasis)
basis[offset] = destBasis
basis = tuple(basis)
return basis, (basis[:offset], tuple([sourceBasis]), basis[offset+1:])
for offset in range(0, len(basis)+1-len(sourceBasis)):
if basis[offset:offset+len(sourceBasis)] == sourceBasis:
basis = list(basis)
basis[offset:offset+len(sourceBasis)] = destBasis
basis = tuple(basis)
return basis, (basis[:offset], sourceBasis, basis[offset+len(sourceBasis):])
return None, (None, None, None)
class BasisState(GeneralisedBidirectionalSearch.State):
"""
This class represents a node in the transform graph. This node specifies
both the current basis and also whether the data for the vector being
transformed is currently 'in-place' (the data is stored in the same location
as it was originally) or 'out-of-place' (the data is stored in a different location).
This distinction is necessary as transforms such as matrix multiplication transforms
necessitate an out-of-place operation, but overall, we require the data after the
complete transform to be back where it was to start with.
"""
__slots__ = []
availableTransformations = self.availableTransformations
IN_PLACE = 0
OUT_OF_PLACE = 1
def next(self):
"""
This function returns the next nodes in the transform graph that can be reached from this node.
It iterates through all available transforms trying to find matches that can transform the current
basis and determines the cost of doing so.
"""
results = []
currentBasis, currentState = self.location
# Loop through all available transforms
for transformID, transformation in enumerate(self.availableTransformations):
# Loop through all basis-changes this 'transform' can handle
for transformationPair in transformation['transformations']:
# Does the transformPair match?
resultBasis, (prefixBasis, matchedSourceBasis, postfixBasis) = transformedBasis(currentBasis, transformationPair)
if not resultBasis: continue
# The cost specified in the transform is per-point in dimensions not listed in the transformationPair
# So we must multiply that cost by the product of the number of points in all other dimensions
costMultiplier = reduce(
operator.mul,
[self.representationMap[repName].latticeEstimate \
for repName in currentBasis if not repName in matchedSourceBasis],
1
)
newCost = list(self.cost)
# This transformation may change the state and/or the basis.
# Here we consider state changes like in-place <--> out-of-place
# and multiplying the data by a constant
resultState = currentState
if transformation.get('outOfPlace', False):
resultState = {
BasisState.IN_PLACE: BasisState.OUT_OF_PLACE,
BasisState.OUT_OF_PLACE: BasisState.IN_PLACE
}[currentState]
# Now you might think that we're violating the cost >= 0 requirement here
# where we use the negative of the number of out-of-place operations.
# While that would be true if this was the only part of the cost, it
# isn't the whole thing. Both 'communicationsCost' and 'cost' occur before
# this term, and 'cost' is guaranteed to be positive.
#
# It is the negative number of out-of-place operations we use here as
# FFTW is faster for out-of-place operations than in-place operations for
# typical transform sizes
newCost[3] -= 1 # Minus the number of out-of-place operations
# Multiply the costMultiplier through the cost listed by the transform
newCost[0:2] = [costMultiplier * transformation.get(key, 0) for key in ['communicationsCost', 'cost']]
newCost[2] += 1 # Number of steps
# Add that cost to the old cost
newCost = tuple(old + new for old, new in zip(self.cost, newCost))
# Create the new BasisState and add it to the list of nodes reachable from this node.
newState = BasisState(
newCost,
(resultBasis, resultState),
self.source,
previous = self.location,
transformation = (transformID, transformationPair)
)
results.append(newState)
return results
def __lt__(self, other):
return self.location < other.location
def pathFromBasisToBasis(start, endID, pathInfo):
"""
Given a dictionary of shortest paths provided by a GeneralisedBidirectional search, determine
the actual path that connects the basis `start` and the basis `end`.
"""
# Final state must be net in-place.
# But we may or may not need scaling
loc = start
path = [loc]
while loc:
path.append(pathInfo[loc].transformations[endID])
path.append(pathInfo[loc].next[endID])
loc = pathInfo[loc].next[endID]
path = path[:-2]
return path
def printBasis(basis):
if isinstance(basis, basestring): return basis
elif len(basis) == 1:
return basis[0] if isinstance(basis[0], basestring) else basis[0].canonicalName
else:
return '(' + ', '.join(dimRep if isinstance(dimRep, basestring) else dimRep.canonicalName for dimRep in basis) + ')'
geometry = self.getVar('geometry')
representationMap = dict()
representationMap.update((rep.canonicalName, rep) for dim in geometry.dimensions for rep in dim.representations)
distributedRepresentations = [rep for dim in geometry.dimensions for rep in dim.representations if rep.hasLocalOffset]
BasisState.representationMap = representationMap
def basisToDimRepBasis(repNameBasis):
if not isinstance(repNameBasis, tuple):
repNameBasis = tuple([repNameBasis])
return tuple(representationMap[dimRepName] for dimRepName in repNameBasis)
vectors = set([v for v in self.getVar('templates') if isinstance(v, VectorElement) and v.needsTransforms])
driver = self._driver
transformMap = dict()
basesFieldMap = dict()
for vector in vectors:
vectorBases = vector.basesNeeded.copy()
if not vector.field.name in basesFieldMap:
basesFieldMap[vector.field.name] = set()
basesFieldMap[vector.field.name].update(vectorBases)
# Next step: Perform Dijkstra search over the provided transforms to find the optimal transform map.
for basesNeeded in list(basesFieldMap.values()):
targetStates = [BasisState( (0, 0, 0, 0), (basis, BasisState.IN_PLACE), sourceID) for sourceID, basis in enumerate(basesNeeded)]
targetLocations = [state.location for state in targetStates]
pathInfo = GeneralisedBidirectionalSearch.perform(targetStates)
for sourceLoc, targetLoc in combinations(2, targetLocations):
path = pathFromBasisToBasis(sourceLoc, targetLocations.index(targetLoc), pathInfo)
# While we now have the paths and we have them quickly, we just need to add the scaling operations
# where and if needed.
transformMap[frozenset([sourceLoc[0], targetLoc[0]])] = path
self.availableTransformations.append(self.ipMultiply)
ipMultiplyID = self.availableTransformations.index(self.ipMultiply)
self.availableTransformations.append(self.oopMultiply)
oopMultiplyID = self.availableTransformations.index(self.oopMultiply)
for basisPair, path in list(transformMap.items()):
if any([self.availableTransformations[transformID].get('requiresScaling', False) for transformID, transformPair in path[1::2]]):
# Scaling is needed.
# There are different strategies for dealing with this.
# A good method would be to modify a matrix transform if we can get away with it, but that's an advanced optimisation
# that will be considered later.
# A simple optimisation is to use an out-of-place multiply instead of an out-of-place copy
if self.oopCopy in path:
# Change an out-of-place copy to an out-of-place multiply if we have one
path[path.index(self.oopCopy)] = (oopMultiplyID, ())
else:
# Add an in-place multiply at the end
path.extend([(ipMultiplyID, ()), path[-1]])
self.vectorTransformMap = dict()
transformsNeeded = list()
basesNeeded = set()
prefixLatticeStringMap = dict()
postfixLatticeStringMap = dict()
delayedException = None
for vector in vectors:
basesNeeded.update(vector.basesNeeded)
vectorBases = list(vector.basesNeeded)
vectorBases.sort()
self.vectorTransformMap[vector] = dict(
bases = vectorBases,
basisPairMap = dict(),
)
vector.transformMap = self.vectorTransformMap[vector]
for basisPair in combinations(2, vectorBases):
basisPairSet = frozenset(basisPair)
path = transformMap[basisPairSet]
basisPair = (path[0][0], path[-1][0])
basisPairInfo = dict(
basisPair = basisPair,
forwardScale = [],
backwardScale = [],
)
self.vectorTransformMap[vector]['basisPairMap'][basisPairSet] = basisPairInfo
transformSteps = []
for (currentBasis, basisState), (transformID, transformPair) in zip(path[:-2:2], path[1::2]):
# The transform may decide that different actions of the same transform
# should be considered different transformations
# (think FFT's with different numbers of points not in the FFT dimension)
geometrySpecification = None
transformation = self.availableTransformations[transformID]
transformation.setdefault('vectors', set()).add(vector)
resultBasis, (prefixBasis, matchedSourceBasis, postfixBasis) = transformedBasis(currentBasis, transformPair)
forward = True
if transformPair:
sourceBasis = transformPair[0]
if not isinstance(sourceBasis, tuple): sourceBasis = tuple([sourceBasis])
forward = True if sourceBasis == matchedSourceBasis else False
if 'requiresScaling' in transformation:
forwardScale, backwardScale = transformation['forwardScale'], transformation['backwardScale']
if not forward:
forwardScale, backwardScale = backwardScale, forwardScale
basisPairInfo['forwardScale'].append(forwardScale)
basisPairInfo['backwardScale'].append(backwardScale)
prefixDimReps = basisToDimRepBasis(prefixBasis)
postfixDimReps = basisToDimRepBasis(postfixBasis)
runtimePrefixDimensions = tuple([dimRep.localLattice for dimRep in prefixDimReps if dimRep.hasLocalOffset or isinstance(dimRep.runtimeLattice, basestring)])
runtimePostfixDimensions = tuple([dimRep.localLattice for dimRep in postfixDimReps if dimRep.hasLocalOffset or isinstance(dimRep.runtimeLattice, basestring)])
prefixLattice = [(dimRep.latticeEstimate, dimRep.localLattice) for dimRep in prefixDimReps if not (dimRep.hasLocalOffset or isinstance(dimRep.runtimeLattice, basestring))]
postfixLattice = [(dimRep.latticeEstimate, dimRep.localLattice) for dimRep in postfixDimReps if not (dimRep.hasLocalOffset or isinstance(dimRep.runtimeLattice, basestring))]
postfixLattice.append((vector.nComponents, '_' + vector.id + '_ncomponents'))
if transformation.get('transformType', 'real') == 'real' and vector.type == 'complex':
postfixLattice.append((2, '2'))
if transformation.get('transformType', 'real') == 'complex' and vector.type == 'real':
delayedException = ParserException(
vector.xmlElement,
"Vector '%(vectorName)s' is of type 'real', but is needed in the following bases: %(basisList)s.\n"
"To transform between these bases, it is necessary to perform the %(firstBasis)s <--> %(secondBasis)s transform, "
"which is only possible for complex-valued vectors." % dict(
vectorName = vector.name,
basisList = ', '.join([printBasis(basis) for basis in vectorBases]),
firstBasis = printBasis(transformPair[0]),
secondBasis = printBasis(transformPair[1])
)
)
# Ideally, we'd rather raise this error on a user-created vector. Similar
# errors may also exist for related vectors which are of the same type as the original vector
# Identifying the error as originating from a user-generated vector makes the problem more obvious
# to the user. The difference between a user-created vector and an automatically generated one is that
# a user-created vector will have an XML element associated with it.
# But, should we not find a user-created vector with this problem, the exception will still be raised below.
# The problem will be harder to trace though.
if vector.xmlElement:
raise delayedException
if transformation.get('geometryDependent', False):
geometrySpecification = (
runtimePrefixDimensions,
reduce(operator.mul, [lattice[0] for lattice in prefixLattice], 1),
reduce(operator.mul, [lattice[0] for lattice in postfixLattice], 1),
runtimePostfixDimensions
)
transformDescriptor = (transformID, geometrySpecification, tuple(basisToDimRepBasis(b) for b in transformPair))
if transformDescriptor not in transformsNeeded:
transformsNeeded.append(transformDescriptor)
prefixLatticeStrings = list(runtimePrefixDimensions)
prefixLatticeStrings.extend([lattice[1] for lattice in prefixLattice])
postfixLatticeStrings = list(runtimePostfixDimensions)
postfixLatticeStrings.extend([lattice[1] for lattice in postfixLattice])
prefixLatticeString = ' * '.join(prefixLatticeStrings) or '1'
postfixLatticeString = ' * '.join(postfixLatticeStrings) or '1'
if transformation.get('geometryDependent', False):
prefixLatticeStringMap.setdefault(transformDescriptor, prefixLatticeString)
postfixLatticeStringMap.setdefault(transformDescriptor, postfixLatticeString)
transformSteps.append(
(
transformsNeeded.index(transformDescriptor),
forward,
transformation.get('outOfPlace', False),
prefixLatticeString,
postfixLatticeString,
)
)
basisPairInfo['transformSteps'] = transformSteps
# If we still have a delayed exception, we must raise it.
if delayedException: raise delayedException
# Now we need to extract the transforms and include that information in choosing transforms
# One advantage of this method is that we no longer have to make extra fft plans or matrices when we could just re-use others.
# Not only do we need to extract the transforms, but we must also produce a simple list of transforms that must be applied
# to change between any bases for this vector.
self.basesNeeded = list(basesNeeded)
self.basesNeeded.sort()
self.neededTransformations = []
for transformDescriptor in transformsNeeded:
transformID, transformSpecifier, transformPair = transformDescriptor
transformation = self.availableTransformations[transformID].copy()
transformation['transformSpecifier'] = transformSpecifier
del transformation['transformations']
transformation['transformPair'] = transformPair
# A bit dodgy, but I can't think of a better way
if transformation.get('geometryDependent', False):
transformation['prefixLatticeString'] = prefixLatticeStringMap[transformDescriptor]
transformation['postfixLatticeString'] = postfixLatticeStringMap[transformDescriptor]
self.neededTransformations.append(transformation)
def functionImplementation(func):
transform = func.transform
transformFunction = transform.get('transformFunction')
transformFunctionPrelude = "if (_prefix_lattice <= 0 || _postfix_lattice <= 0) return;\n"
return transformFunctionPrelude + transformFunction(*func.transformFunctionArgs) if transformFunction else ''
for tID, transform in enumerate(self.neededTransformations):
description = transform.get('description')
if transform['transformPair'] and not description:
basisA, basisB = transform['transformPair']
description = "%s <---> %s transform" % (printBasis(basisA), printBasis(basisB))
transform['description'] = description
functionName = '_transform_%i' % tID
args = [
('bool', '_forward'),
('real', '_multiplier'),
('real* const __restrict__', '_data_in'),
('real* const __restrict__', '_data_out'),
('ptrdiff_t', '_prefix_lattice'),
('ptrdiff_t', '_postfix_lattice')
]
f = Function(name = functionName,
args = args,
implementation = functionImplementation,
description = description)
f.transform = transform
f.transformFunctionArgs = [tID, transform, f]
self.functions[functionName] = f
transform['owner'].transformations.append((tID, transform))
|