1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
|
#!/usr/bin/env python3
# encoding: utf-8
"""
_Stochastic.py
Created by Graham Dennis on 2008-01-13.
Copyright (c) 2008-2012, Graham Dennis and Joe Hope
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
from xpdeint.Features._Feature import _Feature
from xpdeint.Vectors.NoiseVector import NoiseVector
from xpdeint.Segments.Integrators.AdaptiveStep import AdaptiveStep as AdaptiveStepIntegrator
from xpdeint.Geometry.NonUniformDimensionRepresentation import NonUniformDimensionRepresentation
from xpdeint.Stochastic.RandomVariables.GaussianRandomVariable import GaussianRandomVariable
from xpdeint.ParserException import ParserException, parserWarning
class _Stochastic (_Feature):
def adaptiveIntegratorsWithNoises(self):
adaptiveIntegratorList = [ai for ai in self.getVar('templates') if isinstance(ai, AdaptiveStepIntegrator) and ai.dynamicNoiseVectors]
return adaptiveIntegratorList
def xsilOutputInfo(self, dict):
return '\n'.join(nv.implementationsForFunctionName('xsilOutputInfo', dict) for nv in self.noiseVectors)
def preflight(self):
super(_Stochastic, self).preflight()
self.noiseVectors = [o for o in self.getVar('templates') if isinstance(o, NoiseVector)]
self.nonUniformDimRepsNeededForGaussianNoise = set()
for nv in [nv for nv in self.noiseVectors if isinstance(nv.randomVariable, GaussianRandomVariable)]:
self.nonUniformDimRepsNeededForGaussianNoise.update(dimRep for dimRep in nv.field.inBasis(nv.initialBasis) if isinstance(dimRep, NonUniformDimensionRepresentation))
|