1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
@shBang #!/usr/bin/env python3
@*
SplitUniformDimensionRepresentation.tmpl
Created by Graham Dennis on 2008-07-31.
Copyright (c) 2008-2012, Graham Dennis
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*@
@extends xpdeint.Geometry._SplitUniformDimensionRepresentation
@def defines
@#
@super
@if $silent
@stop
@end if
@#
#define ${stepSize} (2.0*M_PI/($_range))
#define ${minimum} (-(${globalLattice}/2) * ${stepSize})
#define ${maximum} ((${globalLattice} - 1)/2 * ${stepSize})
@#
@end def
@def openLoopMemoryOrder
@#
#define ${name} ${arrayName}[${loopIndex} + ${localOffset}]
#define d${name} (${stepSize} * (${volumePrefactor}))
for (long ${loopIndex} = 0; ${loopIndex} < ${localLattice}; ${loopIndex}++) {
@#
@end def
@def closeLoopMemoryOrder
@#
}
#undef ${name}
#undef d${name}
@#
@end def
@def openLoopAscending
@#
#define ${name} ${arrayName}[${loopIndex} + ${localOffset}]
#define d${name} (${stepSize} * (${volumePrefactor}))
for (long ${alternateLoopIndex} = -(${globalLattice}/2); ${alternateLoopIndex} < (${globalLattice} + 1)/2; ${alternateLoopIndex}++) {
long ${loopIndex} = ${alternateLoopIndex};
if (${loopIndex} < 0)
${loopIndex} += ${globalLattice};
@#
@end def
@def closeLoopAscending
@#
}
#undef ${name}
#undef d${name}
@#
@end def
@def localIndexFromIndexForDimensionRep($dimRep)
@# Check that our lattice has more points than the other lattice (provided we
@# know how many points each lattice actually has - if the lattice is defined
@# at runtime we'll just have string rather than a number, so we can't judge).
@assert isinstance($runtimeLattice, basestring) or isinstance(dimRep.runtimeLattice, basestring) or $runtimeLattice >= dimRep.runtimeLattice
@#
${dimRep.loopIndex} + ${dimRep.localOffset} - ${localOffset} + (signbit(${dimRep.name}) ? (${globalLattice} - ${dimRep.globalLattice}) : 0)@slurp
@#
@end def
@def strictlyAscendingGlobalIndex
@#
@if not $hasLocalOffset
${loopIndex} + (signbit(${name}) ? -(${globalLattice}+1)/2 : ${globalLattice}/2)@slurp
@else
lround(${name}/${stepSize}) + ${globalLattice}/2@slurp
@end if
@#
@end def
@def indexForSinglePointSample
@#
@# We want to sample the middle, as that is just the first point in memory, return 0
@# (Don't worry about multiplication by zero, any smart compiler will optimise that out)
0@slurp
@#
@end def
@def createCoordinateVariableForSinglePointSample
@#
${type} ${name} = 0.0;
#define d${name} (${stepSize} * (${volumePrefactor}))
@#
@end def
@def initialiseArray
@#
for (long ${loopIndex} = 0; ${loopIndex} < (${globalLattice}+1)/2; ${loopIndex}++)
${arrayName}[${loopIndex}] = ${loopIndex}*${stepSize};
for (long ${loopIndex} = (${globalLattice}+1)/2; ${loopIndex} < ${globalLattice}; ${loopIndex}++)
${arrayName}[${loopIndex}] = -(${globalLattice} - ${loopIndex}) * ${stepSize};
@#
@end def
|