File: UniformDimensionRepresentation.tmpl

package info (click to toggle)
xmds2 3.0.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 52,068 kB
  • sloc: python: 63,652; javascript: 9,230; cpp: 3,929; ansic: 1,463; makefile: 121; sh: 54
file content (115 lines) | stat: -rw-r--r-- 2,863 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
@shBang #!/usr/bin/env python3

@*
UniformDimensionRepresentation.tmpl

Created by Graham Dennis on 2008-07-31.

Copyright (c) 2008-2012, Graham Dennis

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

*@
@extends xpdeint.Geometry._UniformDimensionRepresentation

@def defines
  @#
  @super
  @if $silent
    @stop
  @end if
  @#
#define ${minimum}     (($type)${_minimum})
#define ${maximum}     (($type)${_maximum})
#define ${stepSize}        (($type)${stepSizeString})
  @#
@end def

@def openLoopAscending
  @#
#define ${name} ${arrayName}[${loopIndex} + ${localOffset}]
#define d${name} (${stepSize} * (${volumePrefactor}))

for (long ${loopIndex} = 0; ${loopIndex} < ${localLattice}; ${loopIndex}++) {
  @#
@end def

@def closeLoopAscending
  @#
}
#undef ${name}
#undef d${name}
  @#
@end def

@def openLoopDescending
  @#
#define ${name} ${arrayName}[${loopIndex} + ${localOffset}]
#define d${name} (${stepSize} * (${volumePrefactor}))

for (long ${loopIndex} = ${localLattice}-1; ${loopIndex} >= 0; ${loopIndex}--) {
  @#
@end def

@def closeLoopDescending
  @#
}
#undef ${name}
#undef d${name}
  @#
@end def

@def localIndexFromIndexForDimensionRep($dimRep)
  @if $dimRep.runtimeLattice == $runtimeLattice or $dimRep.reductionMethod == $ReductionMethod.fixedStep
${dimRep.loopIndex} + ${dimRep.localOffset} - ${localOffset}@slurp
  @elif $dimRep.reductionMethod == $ReductionMethod.fixedRange
    @# We are using a fixed-range reduction method.
    @#
(${dimRep.loopIndex} + ${dimRep.localOffset}) * (${globalLattice}/${dimRep.globalLattice}) - ${localOffset}@slurp
  @else
    @assert False
  @end if
  @#
@end def

@def strictlyAscendingGlobalIndex
  @#
  @if not $hasLocalOffset
    @return $loopIndex
  @else
lround((${name} - ${minimum})/${stepSize})@slurp
  @end if
  @#
@end def

@def indexForSinglePointSample
  @#
  @# Take the middle point, which is in the middle of the array
${globalLattice}/2@slurp
  @#
@end def

@def createCoordinateVariableForSinglePointSample
  @#
${type} ${name} = ${arrayName}[${globalLattice}/2];
#define d${name} (${stepSize} * (${volumePrefactor}))
  @#
@end def

@def initialiseArray
  @#
for (long ${loopIndex} = 0; ${loopIndex} < ${globalLattice}; ${loopIndex}++)
  ${arrayName}[${loopIndex}] = ${minimum} + ${loopIndex}*${stepSize};
  @#
@end def