1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
#!/usr/bin/env python3
# encoding: utf-8
"""
_DimensionRepresentation.py
Created by Graham Dennis on 2008-07-30.
Copyright (c) 2008-2012, Graham Dennis
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
from xpdeint.ScriptElement import ScriptElement
from xpdeint.Utilities import lazy_property
class _DimensionRepresentation(ScriptElement):
"""
See the documentation for the `_Dimension` class for more details, but the idea here is that
the details of the geometry of a dimension in a given space are controlled by a dimension
'representation'. This class controls the creation of loops over the dimension, the creation
of variables for the lattice, minimum and maximum of the representation. Further things like
how exactly to split the dimension are controlled by the transform that created the representation.
"""
class ReductionMethod(object):
fixedRange = 0
fixedStep = 1
@staticmethod
def validate(method):
return method in range(2)
tags = {}
# We define two lattice attributes: latticeEstimate and runtimeLattice.
# If the size of the geometry lattice is a number specified in the XMDS script,
# both "latticeEstimate" and "runtimeLattice" are set to this value. If the size is undefined
# at parse time and specified at run time, "runtimeLattice" holds a string which is
# the C-code global variable that will give the lattice size at run time, and
# "latticeEstimate" is set to a sane numeric placeholder (e.g. 128) for parsing purposes.
instanceAttributes = ['name', 'type', 'runtimeLattice', '_localVariablePrefix', 'reductionMethod', 'tag']
instanceDefaults = dict(
runtimeLattice = 0,
reductionMethod = ReductionMethod.fixedRange,
tag = -1
)
@classmethod
def registerTag(cls, tagName, parent = None):
parent = cls.tagForName(parent) if parent else object
tag = type(tagName, (parent,), {'tagName': tagName})
return cls.tags.setdefault(tagName, tag)
@classmethod
def tagForName(cls, tagName):
return cls.tags[tagName]
def __init__(self, **KWs):
localKWs = self.extractLocalKWs(self.combinedClassInfo('instanceAttributes'), KWs)
ScriptElement.__init__(self, **KWs)
instanceDefaults = self.combinedClassInfo('instanceDefaults')
[setattr(self, attrName, localKWs[attrName] if attrName in localKWs else instanceDefaults.get(attrName))
for attrName in self.combinedClassInfo('instanceAttributes')]
self.silent = False
def __eq__(self, other):
try:
return all([getattr(self, attrName) == getattr(other, attrName) for attrName in self.combinedClassInfo('instanceAttributes')])
except AttributeError:
return NotImplemented
def __hash__(self):
return object.__hash__(self)
def __ne__(self, other):
eq = self.__eq__(other)
if eq is NotImplemented:
return NotImplemented
else:
return not eq
def combinedClassInfo(self, attrName):
attributeType = type(getattr(self, attrName))
result = {list: set}.get(attributeType, attributeType)()
[result.update(getattr(cls, attrName)) for cls in reversed(type(self).mro()) if hasattr(cls, attrName)]
return result
def copy(self, parent):
newInstanceDict = dict([(attrName, getattr(self, attrName)) for attrName in self.combinedClassInfo('instanceAttributes')])
newInstanceDict.update(self.argumentsToTemplateConstructors)
return type(self)(parent = parent, **newInstanceDict)
@lazy_property
def prefix(self):
return self.parent.prefix
@lazy_property
def canonicalName(self):
return self.name if not self.hasLocalOffset else 'distributed ' + self.name
@lazy_property
def globalLattice(self):
return self.prefix + '_lattice_' + self.name
def setHasLocalOffset(self, localVariablePrefix = ''):
if localVariablePrefix == None:
self._localVariablePrefix = None
else:
self._localVariablePrefix = '_local'
if localVariablePrefix:
self._localVariablePrefix += '_' + localVariablePrefix
if 'hasLocalOffset' in self.__dict__:
del self.hasLocalOffset
@lazy_property
def hasLocalOffset(self):
return self._localVariablePrefix != None
@lazy_property
def localLattice(self):
if not self.hasLocalOffset:
return self.globalLattice
else:
return self.prefix + self._localVariablePrefix + '_lattice_' + self.name
@lazy_property
def localOffset(self):
if not self.hasLocalOffset:
return '0'
else:
return self.prefix + self._localVariablePrefix + '_offset_' + self.name
@lazy_property
def minimum(self):
return self.prefix + '_min_' + self.name
@lazy_property
def maximum(self):
return self.prefix + '_max_' + self.name
@lazy_property
def arrayName(self):
return self.prefix + '_' + self.name
@lazy_property
def stepSize(self):
return self.prefix + '_d' + self.name
@lazy_property
def loopIndex(self):
return '_index_' + self.name
@property
def volumePrefactor(self):
return self.parent.volumePrefactor
@property
def latticeEstimate(self):
# Note this will always be a number, even if runtimeLattice is a string
if isinstance(self.runtimeLattice, basestring):
return 128
else:
return self.runtimeLattice
def aliasRepresentationsForFieldInBasis(self, field, basis):
return set([field.dimensionWithName(aliasName).inBasis(basis) \
for aliasName in self.parent.aliases if field.hasDimensionName(aliasName)])
def nonlocalAccessIndexFromStringForFieldInBasis(self, accessString, field, basis):
"""
Return the string representing the index to be used for this dimension representation
when accessing it nonlocally with the string `accessString` and when looping over
`field` in `basis`.
"""
# If we don't have any dimension aliases, then our subclasses will have to handle
# any other cases for nonlocal dimension access
if not len(self.parent.aliases) > 1: return
aliasRepresentations = self.aliasRepresentationsForFieldInBasis(field, basis)
matchingAliasReps = [rep for rep in aliasRepresentations if rep.name == accessString]
if not matchingAliasReps: return
matchingAliasRep = matchingAliasReps[0]
# We are the dimRep for the vector being accessed nonlocally.
# We need to return the index not in us, but in the corresponding dimRep in field (which is the looping field)
fieldDimRep = field.dimensionWithName(self.parent.name).inBasis(basis)
return fieldDimRep.localIndexFromIndexForDimensionRep(matchingAliasRep)
_DimensionRepresentation.registerTag('coordinate')
_DimensionRepresentation.registerTag('spectral')
_DimensionRepresentation.registerTag('auxiliary')
|