File: _DeltaAOperator.py

package info (click to toggle)
xmds2 3.0.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 52,068 kB
  • sloc: python: 63,652; javascript: 9,230; cpp: 3,929; ansic: 1,463; makefile: 121; sh: 54
file content (293 lines) | stat: -rw-r--r-- 14,149 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#!/usr/bin/env python3
# encoding: utf-8
"""
_DeltaAOperator.py

Created by Graham Dennis on 2008-01-01.

Copyright (c) 2008-2012, Graham Dennis

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

"""

from xpdeint.Operators.Operator import Operator
from xpdeint.Geometry.FieldElement import FieldElement
from xpdeint.Vectors.VectorElement import VectorElement
from xpdeint.Vectors.VectorInitialisation import VectorInitialisation
from xpdeint.Function import Function
from xpdeint.Utilities import lazy_property

from xpdeint.ParserException import ParserException

from xpdeint import CodeParser

class _DeltaAOperator (Operator):
  evaluateOperatorFunctionArguments = [('real', '_step')]
  operatorKind = Operator.DeltaAOperatorKind
  
  def __init__(self, *args, **KWs):
    Operator.__init__(self, *args, **KWs)
    
    # Set default variables
    self.integrationVectorsEntity = None
    self.integrationVectors = set()
    self.deltaAField = None
    self.deltaAVectorMap = {}
  
  @lazy_property
  def integrator(self):
    # Our parent is an OperatorContainer, and its parent is the Integrator
    return self.parent.parent
  
  def bindNamedVectors(self):
    super(_DeltaAOperator, self).bindNamedVectors()
    
    if self.integrationVectorsEntity:
      self.integrationVectors.update(self.vectorsFromEntity(self.integrationVectorsEntity))
      
      for integrationVector in self.integrationVectors:
        if not integrationVector.field == self.field:
          raise ParserException(self.integrationVectorsEntity.xmlElement, 
                                "Cannot integrate vector '%s' in this operators element as it "
                                "belongs to a different field" % integrationVector.name)
        
      self.dependencies.update(self.integrationVectors)
  
  
  def preflight(self):
    super(_DeltaAOperator, self).preflight()
    
    # Construct the operator components dictionary
    for integrationVector in self.integrationVectors:
      for componentName in integrationVector.components:
        derivativeString = "d%s_d%s" % (componentName, self.propagationDimension)
        
        # Map of operator names to vector -> component list dictionary
        self.operatorComponents[derivativeString] = {integrationVector: [componentName]}
        
        # Check that the user code block contains derivatives for every vector.
        # If not, throw an exception.
        
        if not derivativeString in self.primaryCodeBlock.codeString:
          raise ParserException(
            self.primaryCodeBlock.xmlElement,
            "Missing derivative for integration variable '%s' in vector '%s'." % (componentName, integrationVector.name)
          )
    
    
    
    # Our job here is to consider the case where the user's integration code
    # depends on a component of an integration vector which might get overwritten
    # in the process of looping over the integration code. For example, if the
    # user has code like:
    # dx_dt[j] = x[j-1]
    # then on the previous loop, x[j-1] will have been overwritten with
    # dx_dt[j-1]*_step (due to the way the delta a operator works). Consequently,
    # x[j-1] won't mean what the user think it means. This would be OK if the code
    # was
    # dx_dt[j] = x[j + 1]
    # however we cannot safely know in all cases if j + 1 is greater than j or not.
    #
    # The solution will be to create an array to save all of the results for dx_dt
    # and then copy the results back in to the x array.
    #
    # As an optimisation, we don't want to do this if all of the accesses for an
    # integer valued dimension is with just the value of the dimension index.
    # 
    # Additionally, if we have an integer-valued dimension at the start that we
    # need to fix this problem for, the array would need to be large enough to
    # hold all of the dimensions after that dimension as well. To reduce the
    # memory requirement for this, we will re-order the looping of the dimensions
    # to put any integer-valued dimensions that need this special treatment as the
    # innermost loops.
    
    dimRepNamesNeedingReordering = set()
    
    # Not all integration vectors may be forcing this reordering. For any that aren't,
    # we can just do the normal behaviour. This saves memory.
    self.vectorsForcingReordering = set()
    
    components = set()
    derivativeMap = {}
    propagationDimension = self.propagationDimension
    basis = self.primaryCodeBlock.basis
    dimRepNameMap = dict([(dimRep.name, dimRep) for dimRep in self.field.inBasis(basis)])
    
    for vector in self.integrationVectors:
      components.update(vector.components)
      for componentName in vector.components:
        derivativeString = ''.join(['d', componentName, '_d', propagationDimension])
        components.add(derivativeString)
        derivativeMap[derivativeString] = vector
    
    indexAccessedVariables = CodeParser.nonlocalDimensionAccessForComponents(components, self.primaryCodeBlock)
    
    simulationDriver = self.getVar('features')['Driver']
    
    for componentName, resultDict, codeSlice in indexAccessedVariables:
      
      vectors = [v for v in self.integrationVectors if componentName in v.components]
      
      if len(vectors) == 1:
        # Either our component belongs to one of the integration vectors
        vector = vectors[0]
      else:
        # Or it is a derivative, and so the vector we should use is the one for the original component
        vector = derivativeMap[componentName]
      
      # Add the dimension names that aren't being accessed with the dimension variable
      # to the set of dimensions needing reordering.
      dimRepNamesForThisVectorNeedingReordering = [dimRepName for dimRepName, (indexString, accessLoc) in resultDict.items() if indexString != dimRepName]
      
      if vector.field.isDistributed:
        distributedDimRepsNeedingReordering = set(
          [dimRep.name for dimRep in self.field.inBasis(basis)
                  if dimRep.hasLocalOffset]
        ).intersection(dimRepNamesForThisVectorNeedingReordering)
        if distributedDimRepsNeedingReordering:
          # This vector is being accessed nonlocally on a dimension that is distributed. This isn't legal.
          dimRepName = list(distributedDimRepsNeedingReordering)[0]
          raise ParserException(self.xmlElement, 
                                  "The dimension '%(dimRepName)s' cannot be accessed nonlocally because it is being distributed with MPI. "
                                  "Try turning off MPI or re-ordering the dimensions in the <geometry> element." % locals())
      
      if dimRepNamesForThisVectorNeedingReordering:
        # If we have any dimensions that need reordering for this vector, add them to the complete set
        dimRepNamesNeedingReordering.update(dimRepNamesForThisVectorNeedingReordering)
        # ... and add the vector itself to the set of vectors forcing this reordering.
        self.vectorsForcingReordering.add(vector)
        
    
    
    # We now have all of the dimension names that need re-ordering to the end of the array.
    # We only need to do our magic if this set is non-empty
    if dimRepNamesNeedingReordering:
      
      # Now we need to construct a new field which has the same dimensions as self.field,
      # but has the dimensions that need reordering at the end.
      newFieldDimensions = self.field.dimensions[:]
      
      dimensionsNeedingReordering = []
      
      # Remove the dimensions needing reordering and replace them at the end
      for dim in newFieldDimensions[:]:
        if dim.inBasis(basis).name in dimRepNamesNeedingReordering:
          newFieldDimensions.remove(dim)
          newFieldDimensions.append(dim)
          dimensionsNeedingReordering.append(dim)
      
      loopingFieldName = ''.join([self.integrator.name, '_', self.name, '_looping_field'])
      
      loopingField = FieldElement(name = loopingFieldName,
                                  **self.argumentsToTemplateConstructors)
      
      loopingField.dimensions = [dim.copy(parent=loopingField) for dim in newFieldDimensions]
      self.primaryCodeBlock.field = loopingField
      
      # Now construct a second field for the vector which will hold our delta a operators
      deltaAFieldName = ''.join([self.integrator.name, '_', self.name, '_delta_a_field'])
      
      self.deltaAField = FieldElement(name = deltaAFieldName,
                                      **self.argumentsToTemplateConstructors)
      
      self.deltaAField.dimensions = [dim.copy(parent = self.deltaAField) for dim in dimensionsNeedingReordering]
      
      propagationDimension = self.propagationDimension
      
      # For each integration vector forcing the reordering, we need to construct
      # a corresponding vector in the new field.
      for integrationVector in self.vectorsForcingReordering:
        deltaAVector = VectorElement(
          name = integrationVector.name, field = self.deltaAField,
          parent = self, initialBasis = self.operatorBasis,
          type = integrationVector.type,
          **self.argumentsToTemplateConstructors
        )
        
        # The vector will only need initialisation if the derivatives are accessed out
        # of order, i.e. dphi_dt[j+1] for example. We can detect this later and change this
        # if that is the case.
        deltaAVector.needsInitialisation = False
        # Construct dx_dt variables for the delta a vector.
        deltaAVector.components = [''.join(['d', componentName, '_d', propagationDimension]) for componentName in integrationVector.components]
        
        # Make sure the vector gets allocated etc.
        self._children.append(deltaAVector)
        
        # Make the vector available when looping
        self.primaryCodeBlock.dependencies.add(deltaAVector)
        
        # Remove the components of the vector from our operatorComponents so that we won't get doubly-defined variables
        for componentName in deltaAVector.components:
          del self.operatorComponents[componentName]
        
        # Add the new delta a vector to the integration vector --> delta a vector map
        self.deltaAVectorMap[integrationVector] = deltaAVector
      
    
    # We need to rewrite all the derivatives to only use dimensions in the delta a field (if we have one)
    # This needs to be done even if we don't have a delta-a field as otherwise writing dx_dt(j: j) wouldn't
    # get transformed as dx_dt won't be vector.
    indexAccessedDerivatives = CodeParser.nonlocalDimensionAccessForComponents(list(derivativeMap.keys()), self.primaryCodeBlock)
    
    for componentName, resultDict, codeSlice in reversed(indexAccessedDerivatives):
      componentAccessString = componentName
      componentAccesses = []
      for dimRepName, (accessString, accessCodeLoc) in resultDict.items():
        if not dimRepName in dimRepNamesNeedingReordering:
          continue
        componentAccesses.append('%(dimRepName)s => %(accessString)s' % locals())
      if componentAccesses:
        componentAccessString += '(' + ','.join(componentAccesses) + ')'
      
      # If we have at least one dimension that is not being accessed with the correct index,
      # we must initialise the delta a vector just in case. (See gravity.xmds for an example)
      if any([resultDict[dimRepName][0] != dimRepName for dimRepName in resultDict if dimRepName in dimRepNamesNeedingReordering]):
        # The integrationVector must be in the deltaAVectorMap because we would have had to allocate
        # a delta-a vector for this integration vector.
        deltaAVector = self.deltaAVectorMap[integrationVector]
        if not deltaAVector.needsInitialisation:
          deltaAVector.needsInitialisation = True
          deltaAVector.initialiser = VectorInitialisation(parent = deltaAVector, **self.argumentsToTemplateConstructors)
          deltaAVector.initialiser.vector = deltaAVector
      
      self.primaryCodeBlock.codeString = self.primaryCodeBlock.codeString[:codeSlice.start] + componentAccessString \
                                        + self.primaryCodeBlock.codeString[codeSlice.stop:]
      
    if self.deltaAField:
      copyDeltaAFunctionName = ''.join(['_', self.id, '_copy_delta_a'])
      loopingField = self.primaryCodeBlock.field
      arguments = [('real', '_step')]
      deltaAFieldReps = self.deltaAField.inBasis(self.operatorBasis)
      arguments.extend([('long', '_' + dimRep.name + '_index') \
                            for dimRep in loopingField.inBasis(self.operatorBasis) if not dimRep in deltaAFieldReps])
      copyDeltaAFunction = Function(name = copyDeltaAFunctionName,
                                    args = arguments,
                                    implementation = self.copyDeltaAFunctionContents,
                                    returnType = 'inline void')
      self.functions['copyDeltaA'] = copyDeltaAFunction
      
      # Create arguments dictionary for a call to the copyDeltaA function
      arguments = dict([('_' + dimRep.name + '_index', dimRep.loopIndex) \
                          for dimRep in loopingField.inBasis(self.operatorBasis) if not dimRep in deltaAFieldReps])
      functionCall = self.functions['copyDeltaA'].call(parentFunction = self.functions['evaluate'], arguments = arguments) + '\n'
      self.primaryCodeBlock.loopArguments['postDimensionLoopClosingCode'] = {
        self.deltaAField.dimensions[0].inBasis(self.operatorBasis).name: functionCall
      }