1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
|
#!/usr/bin/env python3
##################################################
## DEPENDENCIES
import sys
import os
import os.path
try:
import builtins as builtin
except ImportError:
import __builtin__ as builtin
from os.path import getmtime, exists
import time
import types
from Cheetah.Version import MinCompatibleVersion as RequiredCheetahVersion
from Cheetah.Version import MinCompatibleVersionTuple as RequiredCheetahVersionTuple
from Cheetah.Template import Template
from Cheetah.DummyTransaction import *
from Cheetah.NameMapper import NotFound, valueForName, valueFromSearchList, valueFromFrameOrSearchList
from Cheetah.CacheRegion import CacheRegion
import Cheetah.Filters as Filters
import Cheetah.ErrorCatchers as ErrorCatchers
from Cheetah.compat import unicode
from xpdeint.Segments.Integrators._RichardsonFixedStep import _RichardsonFixedStep
##################################################
## MODULE CONSTANTS
VFFSL=valueFromFrameOrSearchList
VFSL=valueFromSearchList
VFN=valueForName
currentTime=time.time
__CHEETAH_version__ = '3.2.3'
__CHEETAH_versionTuple__ = (3, 2, 3, 'final', 0)
__CHEETAH_genTime__ = 1558054969.9906387
__CHEETAH_genTimestamp__ = 'Fri May 17 11:02:49 2019'
__CHEETAH_src__ = '/home/mattias/xmds-2.2.3/admin/staging/xmds-3.0.0/xpdeint/Segments/Integrators/RichardsonFixedStep.tmpl'
__CHEETAH_srcLastModified__ = 'Thu Apr 4 16:29:24 2019'
__CHEETAH_docstring__ = 'Autogenerated by Cheetah: The Python-Powered Template Engine'
if __CHEETAH_versionTuple__ < RequiredCheetahVersionTuple:
raise AssertionError(
'This template was compiled with Cheetah version'
' %s. Templates compiled before version %s must be recompiled.'%(
__CHEETAH_version__, RequiredCheetahVersion))
##################################################
## CLASSES
class RichardsonFixedStep(_RichardsonFixedStep):
##################################################
## CHEETAH GENERATED METHODS
def __init__(self, *args, **KWs):
super(RichardsonFixedStep, self).__init__(*args, **KWs)
if not self._CHEETAH__instanceInitialized:
cheetahKWArgs = {}
allowedKWs = 'searchList namespaces filter filtersLib errorCatcher'.split()
for k,v in KWs.items():
if k in allowedKWs: cheetahKWArgs[k] = v
self._initCheetahInstance(**cheetahKWArgs)
def description(self, **KWS):
## Generated from @def description: segment $segmentNumber ($stepper.name fixed-step, fixed-order integrator with Richardson Extrapolation) at line 26, col 1.
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
write('''segment ''')
_v = VFFSL(SL,"segmentNumber",True) # '$segmentNumber' on line 26, col 27
if _v is not None: write(_filter(_v, rawExpr='$segmentNumber')) # from line 26, col 27.
write(''' (''')
_v = VFFSL(SL,"stepper.name",True) # '$stepper.name' on line 26, col 43
if _v is not None: write(_filter(_v, rawExpr='$stepper.name')) # from line 26, col 43.
write(''' fixed-step, fixed-order integrator with Richardson Extrapolation)''')
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
def localInitialise(self, **KWS):
## CHEETAH: generated from @def localInitialise at line 34, col 1.
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
#
_v = super(RichardsonFixedStep, self).localInitialise()
if _v is not None: write(_filter(_v))
#
write('''
''')
for vector in VFFSL(SL,"integrationVectors",True): # generated from line 39, col 3
_v = VFFSL(SL,"vector.type",True) # '${vector.type}' on line 40, col 1
if _v is not None: write(_filter(_v, rawExpr='${vector.type}')) # from line 40, col 1.
write('''* _T0_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 40, col 21
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 40, col 21.
write('''[''')
_v = VFFSL(SL,"extrapolations",True) # '$extrapolations' on line 40, col 34
if _v is not None: write(_filter(_v, rawExpr='$extrapolations')) # from line 40, col 34.
write('''];
''')
_v = VFFSL(SL,"vector.type",True) # '${vector.type}' on line 41, col 1
if _v is not None: write(_filter(_v, rawExpr='${vector.type}')) # from line 41, col 1.
write('''* _T1_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 41, col 21
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 41, col 21.
write('''[''')
_v = VFFSL(SL,"extrapolations",True) # '$extrapolations' on line 41, col 34
if _v is not None: write(_filter(_v, rawExpr='$extrapolations')) # from line 41, col 34.
write('''];
''')
for i in range(0, VFFSL(SL,"extrapolations",True)): # generated from line 43, col 3
write('''_T0_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 44, col 5
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 44, col 5.
write('''[''')
_v = VFFSL(SL,"i",True) # '$i' on line 44, col 18
if _v is not None: write(_filter(_v, rawExpr='$i')) # from line 44, col 18.
write('''] = _rerow_T0_''')
_v = VFFSL(SL,"i",True) # '${i}' on line 44, col 34
if _v is not None: write(_filter(_v, rawExpr='${i}')) # from line 44, col 34.
write('''_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 44, col 39
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 44, col 39.
write(''';
_T1_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 45, col 5
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 45, col 5.
write('''[''')
_v = VFFSL(SL,"i",True) # '$i' on line 45, col 18
if _v is not None: write(_filter(_v, rawExpr='$i')) # from line 45, col 18.
write('''] = _rerow_T1_''')
_v = VFFSL(SL,"i",True) # '${i}' on line 45, col 34
if _v is not None: write(_filter(_v, rawExpr='${i}')) # from line 45, col 34.
write('''_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 45, col 39
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 45, col 39.
write(''';
''')
write('''
''')
_v = VFFSL(SL,"vector.type",True) # '${vector.type}' on line 48, col 1
if _v is not None: write(_filter(_v, rawExpr='${vector.type}')) # from line 48, col 1.
write('''** _Tprev_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 48, col 25
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 48, col 25.
write(''' = _T0_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 48, col 44
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 48, col 44.
write(''';
''')
_v = VFFSL(SL,"vector.type",True) # '${vector.type}' on line 49, col 1
if _v is not None: write(_filter(_v, rawExpr='${vector.type}')) # from line 49, col 1.
write('''** _Tcurr_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 49, col 25
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 49, col 25.
write(''' = _T1_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 49, col 44
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 49, col 44.
write(''';
''')
_v = VFFSL(SL,"vector.type",True) # '${vector.type}' on line 50, col 1
if _v is not None: write(_filter(_v, rawExpr='${vector.type}')) # from line 50, col 1.
write('''* _result_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 50, col 25
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 50, col 25.
write(''';
''')
write('''
''')
_v = VFFSL(SL,"copyVectors",False)(VFFSL(SL,"integrationVectors",True), '_re_reset') # "${copyVectors($integrationVectors, '_re_reset')}" on line 54, col 1
if _v is not None: write(_filter(_v, rawExpr="${copyVectors($integrationVectors, '_re_reset')}")) # from line 54, col 1.
write('''
''')
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
def functionPrototypes(self, **KWS):
## CHEETAH: generated from @def functionPrototypes at line 61, col 1.
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
#
_v = super(RichardsonFixedStep, self).functionPrototypes()
if _v is not None: write(_filter(_v))
#
for vector in VFFSL(SL,"integrationVectors",True): # generated from line 65, col 3
write('''void _segment''')
_v = VFFSL(SL,"segmentNumber",True) # '${segmentNumber}' on line 66, col 14
if _v is not None: write(_filter(_v, rawExpr='${segmentNumber}')) # from line 66, col 14.
write('''_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 66, col 31
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 66, col 31.
write('''_reset(''')
_v = VFFSL(SL,"vector.type",True) # '${vector.type}' on line 66, col 50
if _v is not None: write(_filter(_v, rawExpr='${vector.type}')) # from line 66, col 50.
write('''* _reset_to);
''')
#
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
def segmentFunctionBody(self, function, **KWS):
## CHEETAH: generated from @def segmentFunctionBody($function) @* Overrides segmentFunctionBody of FixedStep *@ at line 71, col 1.
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
#
_v = VFFSL(SL,"createStepVariable",True) # '${createStepVariable}' on line 73, col 1
if _v is not None: write(_filter(_v, rawExpr='${createStepVariable}')) # from line 73, col 1.
#
featureOrderingOuter = ['Stochastic']
_v = VFFSL(SL,"insertCodeForFeatures",False)('integrateFixedStepBegin', featureOrderingOuter) # "${insertCodeForFeatures('integrateFixedStepBegin', featureOrderingOuter)}" on line 76, col 1
if _v is not None: write(_filter(_v, rawExpr="${insertCodeForFeatures('integrateFixedStepBegin', featureOrderingOuter)}")) # from line 76, col 1.
write('''
''')
_v = VFFSL(SL,"allocate",True) # '${allocate}' on line 78, col 1
if _v is not None: write(_filter(_v, rawExpr='${allocate}')) # from line 78, col 1.
_v = VFFSL(SL,"initialise",True) # '${initialise}' on line 79, col 1
if _v is not None: write(_filter(_v, rawExpr='${initialise}')) # from line 79, col 1.
_v = VFFSL(SL,"localInitialise",True) # '${localInitialise}' on line 80, col 1
if _v is not None: write(_filter(_v, rawExpr='${localInitialise}')) # from line 80, col 1.
write('''
for (long _istep = 0; _istep < ''')
_v = VFFSL(SL,"stepCount",True) # '${stepCount}' on line 82, col 32
if _v is not None: write(_filter(_v, rawExpr='${stepCount}')) # from line 82, col 32.
write('''; _istep++) {
''')
# Insert code for features
featureOrderingInner = ['Output', 'ErrorCheck', 'Stochastic']
#
dict = {'extraIndent': 0}
write(''' ''')
_v = VFFSL(SL,"insertCodeForFeatures",False)('integrateFixedStepInnerLoopBegin', featureOrderingInner, dict) # "${insertCodeForFeatures('integrateFixedStepInnerLoopBegin', featureOrderingInner, dict), autoIndent=True}" on line 87, col 3
if _v is not None: write(_filter(_v, autoIndent=True, rawExpr="${insertCodeForFeatures('integrateFixedStepInnerLoopBegin', featureOrderingInner, dict), autoIndent=True}")) # from line 87, col 3.
extraIndent = VFFSL(SL,"dict.extraIndent",True)
write('''
''')
_v = VFFSL(SL,"preSingleStep",True) # '${preSingleStep, autoIndent=True, extraIndent=extraIndent}' on line 90, col 3
if _v is not None: write(_filter(_v, autoIndent=True, extraIndent=extraIndent, rawExpr='${preSingleStep, autoIndent=True, extraIndent=extraIndent}')) # from line 90, col 3.
write(''' ''')
_v = VFFSL(SL,"richardsonExtrapolate",False)(function) # '${richardsonExtrapolate(function), autoIndent=True, extraIndent=extraIndent}' on line 91, col 3
if _v is not None: write(_filter(_v, autoIndent=True, extraIndent=extraIndent, rawExpr='${richardsonExtrapolate(function), autoIndent=True, extraIndent=extraIndent}')) # from line 91, col 3.
write(''' ''')
_v = VFFSL(SL,"postSingleStep",True) # '${postSingleStep, autoIndent=True, extraIndent=extraIndent}' on line 92, col 3
if _v is not None: write(_filter(_v, autoIndent=True, extraIndent=extraIndent, rawExpr='${postSingleStep, autoIndent=True, extraIndent=extraIndent}')) # from line 92, col 3.
write('''
''')
if VFFSL(SL,"cross",True): # generated from line 94, col 3
# If we are cross-integrating, then we now need to copy our result back
# into the original arrays for the integration vectors
write(''' ''')
_v = VFFSL(SL,"copyResultIntoIntegrationArrays",True) # '${copyResultIntoIntegrationArrays, autoIndent=True, extraIndent=extraIndent}' on line 97, col 3
if _v is not None: write(_filter(_v, autoIndent=True, extraIndent=extraIndent, rawExpr='${copyResultIntoIntegrationArrays, autoIndent=True, extraIndent=extraIndent}')) # from line 97, col 3.
write('''
''')
#
write(''' ''')
_v = VFFSL(SL,"insertCodeForFeaturesInReverseOrder",False)('integrateFixedStepInnerLoopEnd', featureOrderingInner, dict) # "${insertCodeForFeaturesInReverseOrder('integrateFixedStepInnerLoopEnd', featureOrderingInner, dict), autoIndent=True}" on line 101, col 3
if _v is not None: write(_filter(_v, autoIndent=True, rawExpr="${insertCodeForFeaturesInReverseOrder('integrateFixedStepInnerLoopEnd', featureOrderingInner, dict), autoIndent=True}")) # from line 101, col 3.
write('''}
''')
_v = VFFSL(SL,"localFinalise",True) # '${localFinalise}' on line 104, col 1
if _v is not None: write(_filter(_v, rawExpr='${localFinalise}')) # from line 104, col 1.
_v = VFFSL(SL,"finalise",True) # '${finalise}' on line 105, col 1
if _v is not None: write(_filter(_v, rawExpr='${finalise}')) # from line 105, col 1.
_v = VFFSL(SL,"free",True) # '${free}' on line 106, col 1
if _v is not None: write(_filter(_v, rawExpr='${free}')) # from line 106, col 1.
write('''
''')
_v = VFFSL(SL,"insertCodeForFeaturesInReverseOrder",False)('integrateFixedStepEnd', featureOrderingOuter) # "${insertCodeForFeaturesInReverseOrder('integrateFixedStepEnd', featureOrderingOuter)}" on line 108, col 1
if _v is not None: write(_filter(_v, rawExpr="${insertCodeForFeaturesInReverseOrder('integrateFixedStepEnd', featureOrderingOuter)}")) # from line 108, col 1.
#
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
def richardsonExtrapolate(self, function, **KWS):
## CHEETAH: generated from @def richardsonExtrapolate($function) at line 112, col 1.
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
#
write('''long _k = 0;
long _max_integration_steps = 0;
long _istep_temp = _istep;
real _step_temp = _step;
real _''')
_v = VFFSL(SL,"propagationDimension",True) # '${propagationDimension}' on line 119, col 7
if _v is not None: write(_filter(_v, rawExpr='${propagationDimension}')) # from line 119, col 7.
write('''_temp = ''')
_v = VFFSL(SL,"propagationDimension",True) # '${propagationDimension}' on line 119, col 38
if _v is not None: write(_filter(_v, rawExpr='${propagationDimension}')) # from line 119, col 38.
write(''';
for (_k = 0; _k < ''')
_v = VFFSL(SL,"extrapolations",True) # '$extrapolations' on line 121, col 19
if _v is not None: write(_filter(_v, rawExpr='$extrapolations')) # from line 121, col 19.
write('''; _k++)
{
// Swap active rows
{
''')
for vector in VFFSL(SL,"integrationVectors",True): # generated from line 125, col 3
write(''' ''')
_v = VFFSL(SL,"vector.type",True) # '${vector.type}' on line 126, col 5
if _v is not None: write(_filter(_v, rawExpr='${vector.type}')) # from line 126, col 5.
write('''** _temp_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 126, col 28
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 126, col 28.
write(''' = _Tprev_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 126, col 50
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 126, col 50.
write(''';
_Tprev_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 127, col 12
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 127, col 12.
write(''' = _Tcurr_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 127, col 34
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 127, col 34.
write(''';
_Tcurr_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 128, col 12
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 128, col 12.
write(''' = _temp_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 128, col 33
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 128, col 33.
write(''';
''')
write(''' }
long _nk = 2 * (_k + 1);
_max_integration_steps = _nk;
_step = _step_temp / _nk;
''')
_v = VFFSL(SL,"propagationDimension",True) # '${propagationDimension}' on line 137, col 3
if _v is not None: write(_filter(_v, rawExpr='${propagationDimension}')) # from line 137, col 3.
write(''' = _''')
_v = VFFSL(SL,"propagationDimension",True) # '${propagationDimension}' on line 137, col 30
if _v is not None: write(_filter(_v, rawExpr='${propagationDimension}')) # from line 137, col 30.
write('''_temp;
for (_istep = 0; _istep < _nk; _istep++) {
''')
_v = VFN(VFFSL(SL,"stepper",True),"singleIntegrationStep",False)(function) # '${stepper.singleIntegrationStep(function), autoIndent=True}' on line 140, col 5
if _v is not None: write(_filter(_v, autoIndent=True, rawExpr='${stepper.singleIntegrationStep(function), autoIndent=True}')) # from line 140, col 5.
write(''' }
_istep = _istep_temp;
_step = _step_temp;
''')
for vector in VFFSL(SL,"integrationVectors",True): # generated from line 145, col 3
write(''' _result_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 146, col 11
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 146, col 11.
write(''' = _Tcurr_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 146, col 33
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 146, col 33.
write('''[0];
''')
write('''
''')
_v = VFFSL(SL,"copyVectors",False)(VFFSL(SL,"integrationVectors",True), '_result', '_active') # "${copyVectors($integrationVectors, '_result', '_active'), autoIndent=True}" on line 149, col 3
if _v is not None: write(_filter(_v, autoIndent=True, rawExpr="${copyVectors($integrationVectors, '_result', '_active'), autoIndent=True}")) # from line 149, col 3.
write('''
for (long _j = 0; _j < _k; _j++)
{
real _nksubj = 2 * (_k - _j);
real _denominator = pow(((real)_nk) / _nksubj, 2) - 1.0;
''')
for vector in VFFSL(SL,"integrationVectors",True): # generated from line 156, col 5
write(''' ''')
_v = VFFSL(SL,"vector.type",True) # '${vector.type}' on line 157, col 5
if _v is not None: write(_filter(_v, rawExpr='${vector.type}')) # from line 157, col 5.
write('''* const _TcurrJPlusOne_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 157, col 42
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 157, col 42.
write(''' = _Tcurr_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 157, col 64
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 157, col 64.
write('''[_j+1];
''')
_v = VFFSL(SL,"vector.type",True) # '${vector.type}' on line 158, col 5
if _v is not None: write(_filter(_v, rawExpr='${vector.type}')) # from line 158, col 5.
write('''* const _TcurrJ_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 158, col 35
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 158, col 35.
write(''' = _Tcurr_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 158, col 57
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 158, col 57.
write('''[_j];
''')
_v = VFFSL(SL,"vector.type",True) # '${vector.type}' on line 159, col 5
if _v is not None: write(_filter(_v, rawExpr='${vector.type}')) # from line 159, col 5.
write('''* const _TprevJ_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 159, col 35
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 159, col 35.
write(''' = _Tprev_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 159, col 57
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 159, col 57.
write('''[_j];
''')
write('''
''')
_v = VFFSL(SL,"loopOverVectorsWithInnerContentTemplate",False)(VFFSL(SL,"integrationVectors",True),
"""_TcurrJPlusOne_${vector.id}[$index] = _TcurrJ_${vector.id}[$index] + (_TcurrJ_${vector.id}[$index] - _TprevJ_${vector.id}[$index]) / _denominator;
""", basis = VFFSL(SL,"homeBasis",True))
if _v is not None: write(_filter(_v, autoIndent=True, rawExpr='${loopOverVectorsWithInnerContentTemplate($integrationVectors,\n"""_TcurrJPlusOne_${vector.id}[$index] = _TcurrJ_${vector.id}[$index] + (_TcurrJ_${vector.id}[$index] - _TprevJ_${vector.id}[$index]) / _denominator;\n""", basis = $homeBasis), autoIndent=True}')) # from line 162, col 5.
write(''' }
// Reset
''')
_v = VFFSL(SL,"copyVectors",False)(VFFSL(SL,"integrationVectors",True), '_active', '_re_reset') # "${copyVectors($integrationVectors, '_active', '_re_reset'), autoIndent=True}" on line 168, col 3
if _v is not None: write(_filter(_v, autoIndent=True, rawExpr="${copyVectors($integrationVectors, '_active', '_re_reset'), autoIndent=True}")) # from line 168, col 3.
write('''}
''')
for vector in VFFSL(SL,"integrationVectors",True): # generated from line 171, col 3
write('''_result_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 172, col 9
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 172, col 9.
write(''' = _Tcurr_''')
_v = VFFSL(SL,"vector.id",True) # '${vector.id}' on line 172, col 31
if _v is not None: write(_filter(_v, rawExpr='${vector.id}')) # from line 172, col 31.
write('''[_k-1];
''')
write('''
''')
_v = VFFSL(SL,"copyVectors",False)(VFFSL(SL,"integrationVectors",True), '_active', '_result') # "${copyVectors($integrationVectors, '_active', '_result')}" on line 175, col 1
if _v is not None: write(_filter(_v, rawExpr="${copyVectors($integrationVectors, '_active', '_result')}")) # from line 175, col 1.
_v = VFFSL(SL,"copyVectors",False)(VFFSL(SL,"integrationVectors",True), '_re_reset', '_active') # "${copyVectors($integrationVectors, '_re_reset', '_active')}" on line 176, col 1
if _v is not None: write(_filter(_v, rawExpr="${copyVectors($integrationVectors, '_re_reset', '_active')}")) # from line 176, col 1.
_v = VFFSL(SL,"propagationDimension",True) # '${propagationDimension}' on line 177, col 1
if _v is not None: write(_filter(_v, rawExpr='${propagationDimension}')) # from line 177, col 1.
write(''' = _''')
_v = VFFSL(SL,"propagationDimension",True) # '${propagationDimension}' on line 177, col 28
if _v is not None: write(_filter(_v, rawExpr='${propagationDimension}')) # from line 177, col 28.
write('''_temp + _step;
''')
#
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
def writeBody(self, **KWS):
## CHEETAH: main method generated for this template
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
write('''
''')
#
# RichardsonFixedStep.tmpl
#
# Created by Sean Wild on 2013-10-10.
#
# Copyright (c) 2007-2013, Graham Dennis
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
write('''
''')
#
# Function prototypes
write('''
''')
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
##################################################
## CHEETAH GENERATED ATTRIBUTES
_CHEETAH__instanceInitialized = False
_CHEETAH_version = __CHEETAH_version__
_CHEETAH_versionTuple = __CHEETAH_versionTuple__
_CHEETAH_genTime = __CHEETAH_genTime__
_CHEETAH_genTimestamp = __CHEETAH_genTimestamp__
_CHEETAH_src = __CHEETAH_src__
_CHEETAH_srcLastModified = __CHEETAH_srcLastModified__
extrapolations = 4
supportsConstantIPOperators = False
maxIntegrationStepsVar = '_max_integration_steps'
_mainCheetahMethod_for_RichardsonFixedStep = 'writeBody'
## END CLASS DEFINITION
if not hasattr(RichardsonFixedStep, '_initCheetahAttributes'):
templateAPIClass = getattr(RichardsonFixedStep,
'_CHEETAH_templateClass',
Template)
templateAPIClass._addCheetahPlumbingCodeToClass(RichardsonFixedStep)
# CHEETAH was developed by Tavis Rudd and Mike Orr
# with code, advice and input from many other volunteers.
# For more information visit https://cheetahtemplate.org/
##################################################
## if run from command line:
if __name__ == '__main__':
from Cheetah.TemplateCmdLineIface import CmdLineIface
CmdLineIface(templateObj=RichardsonFixedStep()).run()
|