1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
@shBang #!/usr/bin/env python3
@*
DistributedMPIDriver.tmpl
Created by Graham Dennis on 2008-03-28.
Copyright (c) 2008-2012, Graham Dennis
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*@
@extends xpdeint.SimulationDrivers._DistributedMPIDriver
@def description: Distributed MPI Simulation Driver
@def preAllocation($dict)
@#
${distributedTransform.setLocalLatticeAndOffsetVariables, autoIndent=True}@slurp
@#
@end def
@def mainRoutine
@#
int main(int argc, char **argv)
{
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &_size);
MPI_Comm_rank(MPI_COMM_WORLD, &_rank);
${mainRoutineInnerContent, autoIndent=True}@slurp
MPI_Finalize();
return 0;
}
@#
@end def
@def setVectorAllocSizes($vectors)
@#
@super(vectors)
@#
${distributedTransform.setVectorAllocSizes(vectors)}@slurp
@#
@end def
@def loopOverFieldInBasisWithVectorsAndInnerContentEnd($dict)
@#
@set $vectorOverrides = dict['vectorOverrides']
@set $indexOverrides = dict['indexOverrides']
@set $field = dict['field']
@set $basis = dict['basis']
@#
@for $vector in $vectorOverrides
@if not (field.isDistributed and not vector.field.isDistributed)
@# If we aren't integrating over an MPI dimension, then everything is as usual.
@continue
@end if
@# We did integrate over the MPI dimension, so we need to run MPI_Allreduce to combine the results.
@set $arrayName = c'_active_${vector.id}'
@set $size = $vector.sizeInBasisInReals(basis)
@#
@# If we have any dimension overrides, then we don't want to add up the entire field
@for $dimRepName in indexOverrides.keys()
@if vector.field in indexOverrides[dimRepName]
@set dimReps = [dimRep for dimRep in vector.field.inBasis(basis) if dimRep.canonicalName == dimRepName]
@if not dimReps
@continue
@end if
@assert len(dimReps) == 1
@set vectorDimRep = dimReps[0]
@set $indexOverride = indexOverrides[dimRepName][vector.field]
@set $arrayName = c'${arrayName} + ${indexOverride} * ${vector.field.localPointsInDimensionsAfterDimRepInBasis(vectorDimRep, basis)} * _${vector.id}_ncomponents'
@set $size = size + ' / ' + vectorDimRep.localLattice
@end if
@end for
MPI_Allreduce(MPI_IN_PLACE, $arrayName, $size,
MPI_REAL, MPI_SUM, MPI_COMM_WORLD);
@end for
@#
@end def
@def findMax($dict)
@#
@set $variable = dict['variable']
@set $count = dict['count']
@set $type = dict.get('type', 'real').upper()
@set $op = dict.get('op', 'max').upper()
MPI_Allreduce(MPI_IN_PLACE, $variable, $count, MPI_${type}, MPI_${op}, MPI_COMM_WORLD);
@#
@end def
@def binaryWriteOutBegin($dict)
@#
// Only write to file if we are rank 0, as we cannot assume
// that the nodes have equal access to the filesystem
if (_rank == 0) {
@set $dict['extraIndent'] += 2
@#
@end def
@def binaryWriteOutEnd($dict)
@#
@set $field = dict['field']
@set $basis = dict['basis']
@set $dependentVariables = dict['dependentVariables']
@#
@set $dict['extraIndent'] -= 2
@#
}
@if not all([field.hasDimensionName(dimName) for dimName in $distributedDimensionNames])
@# If we don't have all the MPI dimensions, then the data will be local.
@stop
@end if
else {
// We are some other rank that isn't 0, so we need to send our data to rank 0.
ptrdiff_t _sending_var;
@for $shadowVariable in $shadowedVariablesForField(field)
_sending_var = $shadowVariable;
MPI_Ssend(&_sending_var, sizeof(ptrdiff_t), MPI_BYTE, 0, 0, MPI_COMM_WORLD);
@end for
@# Note that a variable corresponds to an array with given component names
@for $variable in $dependentVariables
_sending_var = ${variable.vector.sizeInBasisInReals(basis)};
MPI_Ssend(&_sending_var, sizeof(ptrdiff_t), MPI_BYTE, 0, 0, MPI_COMM_WORLD);
if (_sending_var == 0)
goto _BINARY_WRITE_OUT_END;
MPI_Ssend(${variable.arrayName}, ${variable.vector.sizeInBasisInReals(basis)}, MPI_REAL, 0, 0, MPI_COMM_WORLD);
@end for
_BINARY_WRITE_OUT_END:;
}
MPI_Barrier(MPI_COMM_WORLD);
@#
@end def
@def binaryWriteOutWriteDataBegin($dict)
@#
@set $field = dict['field']
@set $dependentVariables = dict['dependentVariables']
@#
@if not all([field.hasDimensionName(dimName) for dimName in $distributedDimensionNames])
@# If we don't have all the MPI dimensions, then the data will be local.
@return
@end if
@#
@for $shadowVariable in $shadowedVariablesForField(field)
ptrdiff_t _my${shadowVariable} = ${shadowVariable};
@end for
@#
@for $variable in $dependentVariables
${variable.vector.type}* _local${variable.arrayName};
${variable.vector.type}* _backup${variable.arrayName} = ${variable.arrayName};
@end for
for (long _dataForRank = 0; _dataForRank < _size; _dataForRank++) {
@for $shadowVariable in $shadowedVariablesForField(field)
ptrdiff_t ${shadowVariable};
@end for
ptrdiff_t _local_vector_size;
if (_dataForRank == 0) {
@for $shadowVariable in $shadowedVariablesForField(field)
${shadowVariable} = _my${shadowVariable};
@end for
} else {
MPI_Status status;
@for $shadowVariable in $shadowedVariablesForField(field)
MPI_Recv(&${shadowVariable}, sizeof(ptrdiff_t), MPI_BYTE, _dataForRank, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
@end for
// Now allocate the space needed locally, and receive the entire buffer
@for $variable in $dependentVariables
MPI_Recv(&_local_vector_size, sizeof(ptrdiff_t), MPI_BYTE, _dataForRank, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (_local_vector_size == 0)
continue;
_local${variable.arrayName} = (${variable.vector.type}*) xmds_malloc(sizeof(real) * _local_vector_size);
MPI_Recv(_local${variable.arrayName}, _local_vector_size,
MPI_REAL, _dataForRank, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
${variable.arrayName} = _local${variable.arrayName};
@end for
}
@set $dict['extraIndent'] += 2
@#
@end def
@def binaryWriteOutWriteDataEnd($dict)
@#
@set $field = dict['field']
@set $dict['extraIndent'] -= 2
@set $dependentVariables = dict['dependentVariables']
@#
@if not all([field.hasDimensionName(dimName) for dimName in $distributedDimensionNames])
@# If we don't have all the MPI dimensions, then the data will be local.
@return
@end if
@#
if (_dataForRank != 0) {
@for $variable in $dependentVariables
xmds_free(_local${variable.arrayName});
@end for
}
} // End looping over ranks
@for $variable in $dependentVariables
${variable.arrayName} = _backup${variable.arrayName};
@end for
@#
@end def
@def writeDataHDF5ModifyLoopContents($dict)
@#
@set $dimRepOrdering = dict['dimRepOrdering']
@# We only care about elements that are reordered
@set $dimRepOrdering = [(fileDimIndex, memDimIndex, dimRep) \
for fileDimIndex, memDimIndex, dimRep in dimRepOrdering if fileDimIndex != memDimIndex]
@# If dimRepOrdering is empty, we have nothing to do
@if not dimRepOrdering
@return
@end if
@#
@set $writeLoopContents = dict['writeLoopContents']
@capture newWriteLoopContents
@for fileDimIndex, memDimIndex, dimRep in dimRepOrdering
hsize_t file_start_${dimRep.name} = file_start[$fileDimIndex];
hsize_t mem_start_${dimRep.name} = mem_start[$memDimIndex];
hsize_t count_${dimRep.name} = mem_count[$memDimIndex];
mem_count[$memDimIndex] = 1;
@end for
@#
${hdf5DataCopyLoops(dimRepOrdering[:], writeLoopContents)}@slurp
@for fileDimIndex, memDimIndex, dimRep in dimRepOrdering
file_start[$fileDimIndex] = file_start_${dimRep.name};
mem_start[$memDimIndex] = mem_start_${dimRep.name};
mem_count[$memDimIndex] = count_${dimRep.name};
@end for
@end capture
@#
@silent dict['writeLoopContents'] = newWriteLoopContents
@#
@end def
@def hdf5DataCopyLoops(remainingDimReps, writeLoopContents)
@if not remainingDimReps
${writeLoopContents}@slurp
@else
@set fileDimIndex, memDimIndex, dimRep = remainingDimReps.pop(0)
for (hsize_t _i${dimRep.name} = 0; _i${dimRep.name} < count_${dimRep.name}; _i${dimRep.name}++) {
file_start[$fileDimIndex] = file_start_${dimRep.name} + _i${dimRep.name};
mem_start[$memDimIndex] = mem_start_${dimRep.name} + _i${dimRep.name};
${hdf5DataCopyLoops(remainingDimReps, writeLoopContents), autoIndent=True}@slurp
}
@end if
@end def
@def evaluateNoiseVectorBegin($dict)
@#
@set noiseVector = dict['caller']
@#
@if noiseVector.field.isDistributed
@# If the field is distributed, then the noise
@# will need to vary along the MPI dimension, so all is
@# OK.
@return
@end if
@#
@# This means that the noise field doesn't contain the MPI dimension.
@# As a result, the noise vector should be identical
if (_rank == 0) {
// This noise is for a field that isn't distributed, so we should
// make sure the noise is the same on all ranks
@set $dict['extraIndent'] += 2
@#
@end def
@def evaluateNoiseVectorEnd($dict)
@#
@set noiseVector = dict['caller']
@#
@if noiseVector.field.isDistributed
@# If the field is distributed, then the noise
@# will need to vary along the MPI dimension, so all is
@# OK.
@return
@end if
@#
}
// Broadcast the noises to other nodes
MPI_Bcast(_active_${noiseVector.id}, ${noiseVector.sizeInBasisInReals(noiseVector.initialBasis)}, MPI_REAL, 0, MPI_COMM_WORLD);
@set $dict['extraIndent'] -= 2
@#
@end def
@def runtimeSeedGenerationBegin($dict)
@#
@set generator = dict['caller']
@#
// Only generate random seeds on the first rank, then distribute to all.
unsigned long _local_${generator.generatorName}_seeds[${generator.seedCount}];
if (_rank == 0) {
@set dict['extraIndent'] += 2
@#
@end def
@def runtimeSeedGenerationEnd($dict)
@#
@set generator = dict['caller']
@set dict['extraIndent'] -= 2
for (int _i0 = 0; _i0 < ${generator.seedCount}; _i0++)
_local_${generator.generatorName}_seeds[_i0] = (unsigned long)${generator.generatorName}_seeds[_i0];
}
// Broadcast seeds to other nodes
MPI_Bcast(_local_${generator.generatorName}_seeds, ${generator.seedCount}, MPI_UNSIGNED_LONG, 0, MPI_COMM_WORLD);
// Copy to the correct array
for (int _i0 = 0; _i0 < ${generator.seedCount}; _i0++)
${generator.generatorName}_seeds[_i0] = (uint32_t)_local_${generator.generatorName}_seeds[_i0];
@#
@end def
@def openXSILFile($dict)
@#
// Only let rank 0 do the writing to disk
if (_rank != 0)
return NULL;
@#
@end def
|