File: XMDS2Parser.py

package info (click to toggle)
xmds2 3.0.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 52,068 kB
  • sloc: python: 63,652; javascript: 9,230; cpp: 3,929; ansic: 1,463; makefile: 121; sh: 54
file content (2437 lines) | stat: -rwxr-xr-x 128,055 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
#!/usr/bin/env python3
# encoding: utf-8
"""
XMDS2Parser.py

Created by Graham Dennis on 2007-12-29.

Copyright (c) 2007-2014, Graham Dennis, Joe Hope and Mattias Johnsson

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

"""

import re
from xpdeint.ScriptParser import ScriptParser
from xpdeint.ParserException import ParserException, parserWarning
from xpdeint.ParsedEntity import ParsedEntity
from xml.dom import minidom
from xpdeint import RegularExpressionStrings, Utilities

from xpdeint._ScriptElement import _ScriptElement
from xpdeint._UserCodeBlock import _UserCodeBlock
from xpdeint._UserCodeBlock import _UserLoopCodeBlock

from xpdeint.SimulationElement import SimulationElement as SimulationElementTemplate
from xpdeint.Geometry.GeometryElement import GeometryElement as GeometryElementTemplate
from xpdeint.Geometry.FieldElement import FieldElement as FieldElementTemplate
from xpdeint.Geometry._Dimension import _Dimension as Dimension
from xpdeint.Geometry.UniformDimensionRepresentation import UniformDimensionRepresentation
from xpdeint.Geometry.NonUniformDimensionRepresentation import NonUniformDimensionRepresentation

from xpdeint.Vectors.VectorElement import VectorElement as VectorElementTemplate
from xpdeint.Vectors.ComputedVector import ComputedVector as ComputedVectorTemplate
from xpdeint.Vectors.NoiseVector import NoiseVector as NoiseVectorTemplate
from xpdeint.Stochastic.RandomVariables.GaussianBoxMuellerRandomVariable import GaussianBoxMuellerRandomVariable
from xpdeint.Stochastic.RandomVariables.GaussianMKLRandomVariable import GaussianMKLRandomVariable
from xpdeint.Stochastic.RandomVariables.GaussianSolirteRandomVariable import GaussianSolirteRandomVariable
from xpdeint.Stochastic.RandomVariables.UniformRandomVariable import UniformRandomVariable
from xpdeint.Stochastic.RandomVariables.PoissonianRandomVariable import PoissonianRandomVariable
from xpdeint.Stochastic.Generators.POSIXGenerator import POSIXGenerator
from xpdeint.Stochastic.Generators.MKLGenerator import MKLGenerator
from xpdeint.Stochastic.Generators.DSFMTGenerator import DSFMTGenerator
from xpdeint.Stochastic.Generators.SolirteGenerator import SolirteGenerator
from xpdeint.Vectors.VectorInitialisation import VectorInitialisation as VectorInitialisationZeroTemplate
from xpdeint.Vectors.VectorInitialisationFromCDATA import VectorInitialisationFromCDATA as VectorInitialisationFromCDATATemplate
from xpdeint.Vectors.VectorInitialisationFromXSIL import VectorInitialisationFromXSIL as VectorInitialisationFromXSILTemplate
from xpdeint.Vectors.VectorInitialisationFromHDF5 import VectorInitialisationFromHDF5 as VectorInitialisationFromHDF5Template


from xpdeint.Segments.TopLevelSequenceElement import TopLevelSequenceElement as TopLevelSequenceElementTemplate
from xpdeint.SimulationDrivers.SimulationDriver import SimulationDriver as SimulationDriverTemplate
from xpdeint.SimulationDrivers.MultiPathDriver import MultiPathDriver as MultiPathDriverTemplate
from xpdeint.SimulationDrivers.MPIMultiPathDriver import MPIMultiPathDriver as MPIMultiPathDriverTemplate
from xpdeint.SimulationDrivers.AdaptiveMPIMultiPathDriver import AdaptiveMPIMultiPathDriver as AdaptiveMPIMultiPathDriverTemplate
from xpdeint.SimulationDrivers.DistributedMPIDriver import DistributedMPIDriver as DistributedMPIDriverTemplate

from xpdeint.Segments import Integrators
from xpdeint.Segments.FilterSegment import FilterSegment as FilterSegmentTemplate
from xpdeint.Segments.BreakpointSegment import BreakpointSegment as BreakpointSegmentTemplate
from xpdeint.Segments.SequenceSegment import SequenceSegment as SequenceSegmentTemplate

from xpdeint.Operators.OperatorContainer import OperatorContainer as OperatorContainerTemplate

from xpdeint.Operators.DeltaAOperator import DeltaAOperator as DeltaAOperatorTemplate
from xpdeint.Operators.ConstantIPOperator import ConstantIPOperator as ConstantIPOperatorTemplate
from xpdeint.Operators.NonConstantIPOperator import NonConstantIPOperator as NonConstantIPOperatorTemplate
from xpdeint.Operators.ConstantEXOperator import ConstantEXOperator as ConstantEXOperatorTemplate
from xpdeint.Operators.NonConstantEXOperator import NonConstantEXOperator as NonConstantEXOperatorTemplate
from xpdeint.Operators.FilterOperator import FilterOperator as FilterOperatorTemplate
from xpdeint.Operators.CrossPropagationOperator import CrossPropagationOperator as CrossPropagationOperatorTemplate
from xpdeint.Operators.FunctionsOperator import FunctionsOperator as FunctionsOperatorTemplate


from xpdeint.MomentGroupElement import MomentGroupElement as MomentGroupTemplate

from xpdeint import Features

from xpdeint.Features import Transforms

# TODO: Must check that we are never sampling a temporary vector when it doesn't exist.
# The way to do this is after the template tree has been built to iterate over all elements that can sample
# and verifying that it isn't sampling a temporary vector that it didn't create (or is a child of the creator).


class XMDS2Parser(ScriptParser):
  @staticmethod
  def canParseXMLDocument(xmlDocument):
    simulationElement = xmlDocument.getChildElementByTagName("simulation")
    if not simulationElement.hasAttribute('xmds-version') or simulationElement.getAttribute('xmds-version') != '2':
      return False
    return True
  
  def domainPairFromString(self, domainString, element):
    """
    Parse a string of the form ``(someNumber1, someNumber2)`` and return the two
    strings corresponding to the numbers ``someNumber1`` and ``someNumber2`` 
    """
    
    regex = re.compile(RegularExpressionStrings.domainPair)
    result = regex.match(domainString)
    if not result:
      raise ParserException(element, "Could not understand '%(domainString)s' as a domain"
                                     " of the form ( +/-someNumber, +/-someNumber)" % locals())
    
    minimumString = result.group(1)
    maximumString = result.group(2)
    
    return minimumString, maximumString
  
  def parseXMLDocument(self, xmlDocument, globalNameSpace, filterClass):
    self.argumentsToTemplateConstructors = {'searchList':[globalNameSpace], 'filter': filterClass}
    self.globalNameSpace = globalNameSpace
    
    _ScriptElement.argumentsToTemplateConstructors = self.argumentsToTemplateConstructors
    
    simulationElement = xmlDocument.getChildElementByTagName("simulation")
    
    nameElement = simulationElement.getChildElementByTagName('name', optional=True)
    if nameElement:
        self.globalNameSpace['simulationName'] = nameElement.innerText()
    
    authorElement = simulationElement.getChildElementByTagName('author', optional=True)
    if authorElement: author = authorElement.innerText()
    else: author = ''
    self.globalNameSpace['author'] = author
    
    
    descriptionElement = simulationElement.getChildElementByTagName('description', optional=True)
    if descriptionElement: description = descriptionElement.innerText()
    else: description = ''
    self.globalNameSpace['simulationDescription'] = description
    
    self.simulation = _ScriptElement.simulation
    
    simulationElementTemplate = SimulationElementTemplate(parent = self.simulation, **self.argumentsToTemplateConstructors)
    
    self.parseFeatures(simulationElement)
    
    self.parseDriverElement(simulationElement)
    
    self.parseGeometryElement(simulationElement)
    
    self.parseVectorElements(simulationElement)
    
    self.parseComputedVectorElements(simulationElement, None)
    
    self.parseNoiseVectorElements(simulationElement, None)
    
    self.parseTopLevelSequenceElement(simulationElement)
    
    self.parseSimulationFilterElements(simulationElement, None)

    self.parseOutputElement(simulationElement)
    
  
  def parseDependencies(self, element, optional = False):
    dependenciesElement = element.getChildElementByTagName('dependencies', optional)
    dependencyVectorNames = []
    if dependenciesElement:
      dependencyVectorNames = Utilities.symbolsInString(dependenciesElement.innerText(), xmlElement = element)
      return ParsedEntity(dependenciesElement, dependencyVectorNames)
    else:
      return None
    
  
  def parseDriverElement(self, simulationElement):
    driverClass = SimulationDriverTemplate
    
    driverAttributeDictionary = dict()
    
    driverElement = simulationElement.getChildElementByTagName('driver', optional=True)
    if driverElement:
      
      driverName = driverElement.getAttribute('name').strip().lower()
      
      class UnknownDriverException(Exception):
        pass

      # Check to see if run-time validation has been selected
      runTimeValidationSelected = False
      validationFeature = None
      if 'Validation' in self.globalNameSpace['features']:
        validationFeature = self.globalNameSpace['features']['Validation']
        if validationFeature.runValidationChecks == True:
          runTimeValidationSelected = True
        
      try:
        if 'multi-path' in driverName:
          if driverName == 'multi-path':
            driverClass = MultiPathDriverTemplate
          elif driverName == 'mpi-multi-path':
            driverClass = MPIMultiPathDriverTemplate
          elif driverName == 'adaptive-mpi-multi-path':
            driverClass = AdaptiveMPIMultiPathDriverTemplate
          else:
            raise UnknownDriverException()
          
          if not driverElement.hasAttribute('paths'):
            raise ParserException(driverElement, "Missing 'paths' attribute for multi-path driver.")

          pathCountString = driverElement.getAttribute('paths')
          try:
            pathCount = RegularExpressionStrings.integerInString(pathCountString)
          except ValueError as err:
            # If we didn't parse it, then we might be using the run-time validation feature
            if runTimeValidationSelected:
              validationFeature.validationChecks.append("""
              if (%(pathCountString)s <= 0)
                _LOG(_ERROR_LOG_LEVEL, "ERROR: The number of paths '%(pathCountString)s' must be greater than zero.\\n"
                                       "pathCount = %%li\\n", (long)%(pathCountString)s);
              """ % locals())
              pathCount = pathCountString
            else:
              raise ParserException(driverElement, "Could not understand path count '%(pathCountString)s' as an integer. "
                                                   """Use feature <validation kind="run-time"/> to allow arbitrary code.""")
          driverAttributeDictionary['pathCount'] = pathCount
        elif driverName == 'none':
          pass
        elif driverName == 'distributed-mpi':
          driverClass = DistributedMPIDriverTemplate
        else:
          raise UnknownDriverException()
      except UnknownDriverException as err:
        raise ParserException(driverElement, "Unknown driver type '%(driverName)s'. "
                                             "The options are 'none' (default), 'multi-path', 'mpi-multi-path', 'adaptive-mpi-multi-path' or 'distributed-mpi'." % locals())
      
      if driverClass == MultiPathDriverTemplate:
        kindString = None
        if driverElement.hasAttribute('kind'):
          kindString = driverElement.getAttribute('kind').strip().lower()
        if kindString in (None, 'single'):
          pass
        elif kindString == 'mpi':
          driverClass = MPIMultiPathDriverTemplate
        else:
          raise ParserException(driverElement,
                                "Unknown multi-path kind '%(kindString)s'. "
                                "The options are 'single' (default), or 'mpi'." % locals())
    
    simulationDriver = driverClass(parent = self.simulation, xmlElement = driverElement,
                                   **self.argumentsToTemplateConstructors)
    self.applyAttributeDictionaryToObject(driverAttributeDictionary, simulationDriver)
    return simulationDriver
  
  
  def parseFeatures(self, simulationElement):
    featuresParentElement = simulationElement.getChildElementByTagName('features', optional=True)
    if not featuresParentElement:
      featuresParentElement = simulationElement
    
    transformMultiplexer = Transforms.TransformMultiplexer.TransformMultiplexer(parent = self.simulation,
                                                                                **self.argumentsToTemplateConstructors)
    
    def parseSimpleFeature(tagName, featureClass):
      featureElement = featuresParentElement.getChildElementByTagName(tagName, optional=True)
      feature = None
      if featureElement:
        if len(featureElement.innerText()) == 0 or featureElement.innerText().lower() == 'yes':
          feature = featureClass(parent = self.simulation, xmlElement = featureElement,
                                 **self.argumentsToTemplateConstructors)
      return featureElement, feature
    
    
    parseSimpleFeature('auto_vectorise', Features.AutoVectorise.AutoVectorise)
    parseSimpleFeature('benchmark', Features.Benchmark.Benchmark)
    parseSimpleFeature('error_check', Features.ErrorCheck.ErrorCheck)
    parseSimpleFeature('bing', Features.Bing.Bing)
    parseSimpleFeature('openmp', Features.OpenMP.OpenMP)
    parseSimpleFeature('halt_non_finite', Features.HaltNonFinite.HaltNonFinite)
    parseSimpleFeature('diagnostics', Features.Diagnostics.Diagnostics)
    
    openmpElement = featuresParentElement.getChildElementByTagName('openmp', optional=True)
    if openmpElement:
      threadCount = None
      if openmpElement.hasAttribute('threads'):
        try:
          threadCountString = openmpElement.getAttribute('threads')
          threadCount = int(threadCountString)
        except ValueError as err:
          raise ParserException(openmpElement, "Cannot understand '%(threadCountString)s' as an "
                                               "integer number of threads." % locals())
        
        if threadCount <= 0:
          raise ParserException(openmpElement, "The number of threads must be greater than 0.")
      openmpFeature = Features.OpenMP.OpenMP(parent = self.simulation,
                                             xmlElement = openmpElement,
                                             **self.argumentsToTemplateConstructors)
      openmpFeature.threadCount = threadCount
    
    precisionElement = featuresParentElement.getChildElementByTagName('precision', optional=True)
    if precisionElement:
      content = precisionElement.innerText().strip().lower()
      if content:
        if not content in ['single', 'double']:
          raise ParserException(
            precisionElement,
            "Unrecognised precision '%s'. Options are 'single' or 'double' (default)." % content
          )
        self.globalNameSpace['precision'] = content
    
    chunkedOutputElement = featuresParentElement.getChildElementByTagName('chunked_output', optional=True)
    if chunkedOutputElement:
      sizeString = chunkedOutputElement.getAttribute('size').strip().lower()
      match = re.match(r'(\d+)(b|kb|mb|gb|tb)', sizeString)
      if not match:
        raise ParserException(
          chunkedOutputElement,
          "The 'size' attribute of the 'chunked_output' tag must be an integer followed by one of the suffixes "
          "'B' (bytes), 'kB' (kilobytes), 'MB' (megabytes), 'GB' (gigabytes) or 'TB' (terabytes)."
        )
      chunkSize = int(match.group(1))
      chunkSize *= 1024 ** {'b': 0, 'kb': 1, 'mb': 2, 'gb': 3, 'tb': 4}[match.group(2)]
      chunkedOutputFeature = Features.ChunkedOutput.ChunkedOutput(
        parent = self.simulation,
        chunkSize = chunkSize,
        xmlElement = chunkedOutputElement,
        **self.argumentsToTemplateConstructors
      )

    validationFeatureElement = featuresParentElement.getChildElementByTagName('validation', optional=True)
    if validationFeatureElement and validationFeatureElement.hasAttribute('kind'):
      kindString = validationFeatureElement.getAttribute('kind').strip().lower()
      
      if kindString in ('run-time', 'none'):
        validationFeature = Features.Validation.Validation(
          parent = self.simulation,
          runValidationChecks = kindString == 'run-time',
          xmlElement = validationFeatureElement,
          **self.argumentsToTemplateConstructors
        )
      elif kindString == 'compile-time':
        pass
      else:
        raise ParserException(validationFeatureElement, "The 'kind' attribute of the <validation> tag must be one of "
                                                        "'compile-time', 'run-time' or 'none'.")
      
    # We want the Globals element to be parsed before the Arguments element so that the globals for globals
    # appear in the generated source before the globals for Arguments.  This prevents anyone inadvertently using
    # the arguments in the initialisation of the globals.  To achieve this, people should put code in the CDATA
    # block for arguments.
    
    globalsElement = featuresParentElement.getChildElementByTagName('globals', optional=True)
    if globalsElement:
      globalsTemplate = Features.Globals.Globals(parent = self.simulation,
                                                 **self.argumentsToTemplateConstructors)
      globalsTemplate.codeBlocks['globalsCode'] = _UserCodeBlock(
        parent = globalsTemplate, xmlElement = globalsElement,
        **self.argumentsToTemplateConstructors
      )

    argumentsFeatureElement = featuresParentElement.getChildElementByTagName('arguments', optional=True)
    
    if argumentsFeatureElement:
      argumentsFeature = Features.Arguments.Arguments(
        parent = self.simulation, xmlElement = argumentsFeatureElement,
        **self.argumentsToTemplateConstructors
      )
      
      argumentElements = argumentsFeatureElement.getChildElementsByTagName('argument', optional=True)
      
      if argumentsFeatureElement.getAttribute('append_args_to_output_filename') == "yes":
        argumentsFeature.appendArgsToOutputFilename = True
      else:
        argumentsFeature.appendArgsToOutputFilename = False

      argumentsFeature.codeBlocks['postArgumentProcessing'] = _UserCodeBlock(
        xmlElement = argumentsFeatureElement, parent = argumentsFeature,
        **self.argumentsToTemplateConstructors
      )
      
      argumentList = []
      # Note that "h" is already taken as the "help" option 
      shortOptionNames = set(['h'])
      
      for argumentElement in argumentElements:
        name = argumentElement.getAttribute('name').strip()
        type = argumentElement.getAttribute('type').strip().lower()
        defaultValue = argumentElement.getAttribute('default_value').strip()
        
        # Determine the short name (i.e. single character) of the full option name
        shortName = ""
        additionalAllowedCharacters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'
        for character in name+additionalAllowedCharacters:
          if character not in shortOptionNames:
            shortName = character
            shortOptionNames.add(character)
            break
        
        if shortName == "":
          raise ParserException(argumentElement, "Unable to find a short (single character) name for command line option")        
        
        if not type in ('int', 'integer', 'long', 'real', 'string'):
          raise ParserException(argumentElement, "Invalid type name '%(type)s'. "
                                                 "Valid options are 'integer', 'int', 'long', 'real' or 'string'." % locals())
        
        argumentAttributeDictionary = dict()
        
        argumentAttributeDictionary['name'] = name
        argumentAttributeDictionary['shortName'] = shortName
        argumentAttributeDictionary['type'] = type
        argumentAttributeDictionary['defaultValue'] = defaultValue
        
        argumentList.append(argumentAttributeDictionary)
      
      argumentsFeature.argumentList = argumentList
    
    

    
    cflagsElement = featuresParentElement.getChildElementByTagName('cflags', optional=True)
    if cflagsElement:
      cflagsTemplate = Features.CFlags.CFlags(parent = self.simulation,
                                              **self.argumentsToTemplateConstructors)
      cflagsTemplate.cflagsString = cflagsElement.innerText().strip()
    
    fftwElement = featuresParentElement.getChildElementByTagName('fftw', optional=True)
    
    if fftwElement:
      fourierTransformClass = Transforms.FourierTransformFFTW3.FourierTransformFFTW3
      fftAttributeDictionary = dict()
      
      threadCount = 1
      if fftwElement.hasAttribute('threads'):
        try:
          threadCountString = fftwElement.getAttribute('threads')
          threadCount = int(threadCountString)
        except ValueError as err:
          raise ParserException(fftwElement, "Cannot understand '%(threadCountString)s' as an "
                                             "integer number of threads." % locals())
        
        if threadCount <= 0:
          raise ParserException(fftwElement, "The number of threads must be greater than 0.")
      
      planType = None
      if not fftwElement.hasAttribute('plan'):
        pass
      else:
        planType = {
          'estimate': 'FFTW_ESTIMATE',
          'measure': 'FFTW_MEASURE',
          'patient': 'FFTW_PATIENT',
          'exhaustive': 'FFTW_EXHAUSTIVE'
        }.get(fftwElement.getAttribute('plan').strip().lower())
        if not planType:
          raise ParserException(fftwElement, "The plan attribute must be one of 'estimate', 'measure', 'patient' or 'exhaustive'.")
      
      if planType:
        fftAttributeDictionary['planType'] = planType
      
      
      if 'OpenMP' in self.globalNameSpace['features'] or threadCount > 1:
        if fourierTransformClass == Transforms.FourierTransformFFTW3.FourierTransformFFTW3:
          fourierTransformClass = Transforms.FourierTransformFFTW3Threads.FourierTransformFFTW3Threads
          if 'OpenMP' in self.globalNameSpace['features']:
            fourierTransformClass.fftwSuffix = 'omp'
            threadCount = 'omp_get_max_threads()'
        elif fourierTransformClass == Transforms._NoTransform._NoTransform:
          raise ParserException(fftwElement, "Can't use threads with no fourier transforms.")
        else:
          # This shouldn't be reached because the fourierTransformClass should be one of the above options
          raise ParserException(fftwElement, "Internal consistency error.")
        
        fftAttributeDictionary['threadCount'] = threadCount
      
      fourierTransform = fourierTransformClass(parent = self.simulation, **self.argumentsToTemplateConstructors)
      
      self.applyAttributeDictionaryToObject(fftAttributeDictionary, fourierTransform)
  
  def parseFeatureAttributes(self, someElement, someTemplate):
    self.parseMaxIterationsAttribute(someElement, someTemplate)
  
  def parseMaxIterationsAttribute(self, someElement, someTemplate):
    if not isinstance(someTemplate, Integrators.AdaptiveStep.AdaptiveStep):
      return
    
    if not someElement.hasAttribute('max_iterations'):
      return
    
    maxIterationsString = someElement.getAttribute('max_iterations').strip()
    try:
      maxIterations = int(maxIterationsString)
      if not maxIterations >= 1:
        raise ParserException(someElement, "max_iterations value must be a positive integer.")
    except ValueError as err:
      raise ParserException(someElement, "Unable to understand '%(maxIterationsString)s' as an integer for 'max_iterations'.")
    
    if not 'MaxIterations' in self.globalNameSpace['features']:
      maxIterationsFeature = Features.MaxIterations.MaxIterations(**self.argumentsToTemplateConstructors)
      maxIterationsFeature.maxIterationsDict = {}
    else:
      maxIterationsFeature = self.globalNameSpace['features']['MaxIterations']
    
    maxIterationsFeature.maxIterationsDict[someTemplate] = maxIterations
  
  def parseGeometryElement(self, simulationElement):
    geometryElement = simulationElement.getChildElementByTagName('geometry')
    
    geometryTemplate = GeometryElementTemplate(parent = self.simulation, **self.argumentsToTemplateConstructors)
    
    ## First grab the propagation dimension name
    
    propagationDimensionElement = geometryElement.getChildElementByTagName('propagation_dimension')
    if len(propagationDimensionElement.innerText()) == 0:
      raise ParserException(propagationDimensionElement, "The propagation_dimension element must not be empty")
    
    propagationDimensionName = propagationDimensionElement.innerText()
    self.globalNameSpace['globalPropagationDimension'] = propagationDimensionName
    self.globalNameSpace['symbolNames'].add(propagationDimensionName)
    
    noTransform = self.globalNameSpace['features']['TransformMultiplexer'].transformWithName('none')
    
    propagationDimension = Dimension(name = propagationDimensionName,
                                     transverse = False,
                                     transform = noTransform,
                                     parent = geometryTemplate,
                                     **self.argumentsToTemplateConstructors)
    
    propagationDimension.addRepresentation(
      NonUniformDimensionRepresentation(
        name = propagationDimensionName,
        type = 'real',
        parent = propagationDimension,
        xmlElement = propagationDimensionElement,
        tag = NonUniformDimensionRepresentation.tagForName('coordinate'),
        **self.argumentsToTemplateConstructors
      )
    )
    
    geometryTemplate.dimensions = [propagationDimension]
    
    ## Now grab and parse all of the transverse dimensions
    
    geometryTemplate.primaryTransverseDimensionNames = []
    
    transverseDimensionsElement = geometryElement.getChildElementByTagName('transverse_dimensions', optional=True)
    if transverseDimensionsElement:
      dimensionElements = transverseDimensionsElement.getChildElementsByTagName('dimension', optional=True)
      
      aliasDimensions = []
      
      for dimensionElement in dimensionElements:
        def parseAttribute(attrName):
          if not dimensionElement.hasAttribute(attrName) or len(dimensionElement.getAttribute(attrName)) == 0:
            raise ParserException(dimensionElement, "Each dimension element must have a non-empty"
                                                    " '%(attrName)s' attribute" % locals())
          
          return dimensionElement.getAttribute(attrName).strip()
        
        
        ## Grab the name of the dimension
        dimensionName = parseAttribute('name')
        
        try:
          dimensionName = Utilities.symbolInString(dimensionName, xmlElement = dimensionElement)
        except ValueError as err:
          raise ParserException(dimensionElement, "'%(dimensionName)s is not a valid name for a dimension.\n"
                                                  "It must not start with a number, and can only contain "
                                                  "alphanumeric characters and underscores." % locals())
        ## Make sure the name is unique
        if dimensionName in self.globalNameSpace['symbolNames']:
          raise ParserException(dimensionElement, "Dimension name %(dimensionName)s conflicts with "
                                                  "previously-defined symbol of the same name." % locals())
        
        geometryTemplate.primaryTransverseDimensionNames.append(dimensionName)
        
        ## Now make sure no-one else steals it
        self.globalNameSpace['symbolNames'].add(dimensionName)
        
        # Work out the type of the dimension
        dimensionType = 'real'
        if dimensionElement.hasAttribute('type') and dimensionElement.getAttribute('type'):
          dimensionType = dimensionElement.getAttribute('type').strip().lower()
          if dimensionType == 'real':
            pass
          elif dimensionType in ('long', 'int', 'integer'):
            dimensionType = 'long'
          else:
            raise ParserException(dimensionElement, "'%(dimensionType)s' is not a valid type for a dimension.\n"
                                                    "It must be one of 'real' (default) or "
                                                    "'integer'/'int'/'long' (synonyms)." % locals())
        
        
        transform = None
        transformName = 'none'
        transformMultiplexer = self.globalNameSpace['features']['TransformMultiplexer']
        
        if dimensionType == 'real' and dimensionElement.hasAttribute('transform'):
          transformName = dimensionElement.getAttribute('transform').strip()
          transform = transformMultiplexer.transformWithName(transformName.lower())
          if not transform:
            raise ParserException(dimensionElement, "Unknown transform of type '%(transformName)s'." % locals())
        
        if dimensionType == 'long':
          transform = transformMultiplexer.transformWithName('none')
        
        if not transform:
          # default to 'dft'
          # FIXME: This is debatable. Perhaps a default of 'none' is more sensible.
          transformName = 'dft'
          transform = transformMultiplexer.transformWithName('dft')


        if dimensionElement.hasAttribute('domain'):
          ## Grab the domain strings
          
          domainString = parseAttribute('domain')
          
          ## Returns two strings for the end points
          minimumString, maximumString = self.domainPairFromString(domainString, dimensionElement)
        elif dimensionElement.hasAttribute('length_scale'):
          minimumString = '0'
          maximumString = dimensionElement.getAttribute('length_scale').strip()
        else:
          raise ParserException(dimensionElement, "Each dimension element must have a non-empty 'domain' attribute\n"
                                                  "(or in the case of the 'hermite-gauss' transform a 'length_scale' attribute).")

        # Check to see if run-time validation has been selected
        runTimeValidationSelected = False
        validationFeature = None
        if 'Validation' in self.globalNameSpace['features']:
          validationFeature = self.globalNameSpace['features']['Validation']
          if validationFeature.runValidationChecks == True:
            runTimeValidationSelected = True
        
        if dimensionType == 'real':
          domainPairType = float
        else:
          domainPairType = int
        ## Now we try make some sense of them
        try:
          minimumValue = domainPairType(minimumString)
          maximumValue = domainPairType(maximumString)
        except ValueError as err: # If not floats then we check the validation feature.
          if runTimeValidationSelected:
            validationFeature.validationChecks.append("""
            if (%(minimumString)s >= %(maximumString)s)
              _LOG(_ERROR_LOG_LEVEL, "ERROR: The end point of the dimension '%(maximumString)s' must be "
                                     "greater than the start point.\\n"
                                     "Start = %%e, End = %%e\\n", (real)%(minimumString)s, (real)%(maximumString)s);""" % locals())
          else:
            raise ParserException(dimensionElement, """Could not understand domain (%(minimumString)s, %(maximumString)s) as numbers.
Use feature <validation kind="run-time"/> to allow for arbitrary code.""" % locals() )
        else: # In this case we were given numbers and should check that they in the correct order here
          if minimumValue >= maximumValue:
            raise ParserException(dimensionElement, "The end point of the dimension, '%(maximumString)s', must be "
                                                    "greater than the start point, '%(minimumString)s'." % locals())
        

        if dimensionType == 'real' or dimensionElement.hasAttribute('lattice'):
          ## Grab the number of lattice points and make sure it's a positive integer
          latticeString = parseAttribute('lattice')
          if not latticeString.isdigit():
            # This might be okay if the user has asked for run-time validation, so that
            # the lattice value is actually a variable to be specified later.

            # Real dimension, lattice attribute isn't a number, so is run-time validation on?
            if runTimeValidationSelected == False:
              # Not on, so barf
              raise ParserException(dimensionElement, "Could not understand lattice value "
                                                    "'%(latticeString)s' as a positive integer. "
                                                    "If you want to specify the lattice value at runtime you need "
                                                    "to add <validation kind=\"run-time\"/> to your features block."  % locals())

            # For now only allow run-time lattice definition for 'none', 'dft', 'dct' and 'dst' transforms.
            # This is because lattice points for Hermite-Gauss and Bessel transforms are not uniformly spaced,
            # and currently the spacing is worked out in _MMT.py at parse time, which requires the number
            # of lattice points to be known.            
            if transformName not in ['dft', 'dct', 'dst', 'none']:
              raise ParserException(dimensionElement, "Defining the lattice size at run time is currently only "
                                                      "implemented for transform types 'dft', 'dct', 'dst' and 'none'. "
                                                      "You are using transform type '%(transformName)s'. Aborting." % locals())

            # All right, we have real dimension, run-time validation is on, an acceptable tranform is in
            # use, so let's allow a non-numeric lattice value
            lattice = latticeString
          else:
            # The lattice string a digit, so everything is cool
            lattice = int(latticeString)
            if dimensionType == 'long' and (not runTimeValidationSelected) and (maximumValue - minimumValue + 1) != lattice:
              raise ParserException(dimensionElement, "The lattice value of '%(latticeString)s' doesn't match with the domain "
                                                    "'%(domainString)s'." % locals())
          
          # If we are validating at run time, an explicit lattice has been provided, and we are a long dimension then we need to check that the lattice
          # agrees with the minimum / maximum values of the dimension.
          if runTimeValidationSelected and dimensionType == 'long':
            validationFeature.validationChecks.append("""
            if ((%(latticeString)s) != ((%(maximumString)s) - (%(minimumString)s) + 1))
              _LOG(_ERROR_LOG_LEVEL, "ERROR: The lattice value of '%(latticeString)s'=%%li doesn't match with the domain "
                                     "'%(minimumString)s'=%%li to '%(maximumString)s'=%%li (%%li lattice points).\\n",
                                     long(%(latticeString)s), long(%(minimumString)s), long(%(maximumString)s), long((%(maximumString)s) - (%(minimumString)s)+1));
            """ % locals())
        else:
          # Only for 'long' dimensions
          if not runTimeValidationSelected:
            lattice = maximumValue - minimumValue + 1
          else:
            lattice = "((%(maximumString)s) - (%(minimumString)s) + 1)" % locals()
        
        
        aliasNames = []
        if dimensionElement.hasAttribute('aliases'):
          aliasNames.extend(Utilities.symbolsInString(dimensionElement.getAttribute('aliases'), xmlElement = dimensionElement))
          for aliasName in aliasNames:
            if aliasName in self.globalNameSpace['symbolNames']:
              raise ParserException(dimensionElement, "Cannot use '%(aliasName)s' as an alias name for dimension '%(dimensionName)s\n"
                                                      "This name is already in use." % locals())
            self.globalNameSpace['symbolNames'].add(aliasName)
        
        aliasNames.insert(0, dimensionName)
        
        if dimensionElement.hasAttribute('spectral_lattice'):
          spectralLattice = dimensionElement.getAttribute('spectral_lattice').strip()
          if not spectralLattice.isdigit():
            raise ParserException(dimensionElement, "Could not understand spectral_lattice value of '%(spectralLattice)s' as a positive integer." % locals())
          spectralLattice = int(spectralLattice)
          if spectralLattice > lattice:
            raise ParserException(dimensionElement, "The size of the spectral lattice must be equal or less than the size of the spatial lattice.")
        else:
          spectralLattice = lattice
        
        volumePrefactor = None
        if dimensionElement.hasAttribute('volume_prefactor'):
            volumePrefactor = dimensionElement.getAttribute('volume_prefactor').strip()
        
        aliasNameSet = set(aliasNames)
        
        for aliasName in aliasNames:
          dim = transform.newDimension(name = aliasName, lattice = lattice,
                                       spectralLattice = spectralLattice, type = dimensionType,
                                       minimum = minimumString, maximum = maximumString,
                                       parent = geometryTemplate, transformName = transformName,
                                       aliases = aliasNameSet, volumePrefactor = volumePrefactor,
                                       xmlElement = dimensionElement)
          if aliasName == dimensionName:
            geometryTemplate.dimensions.append(dim)
          else:
            aliasDimensions.append(dim)
      ## End of "for dimensionElement in dimensionElements" block      


      # Alias dimensions come after normal dimensions so that we don't end up with a distributed-mpi set up over the first dimension and its alias
      geometryTemplate.dimensions.extend(aliasDimensions)

      ## If there is more than one transverse dimension, and at least one
      ## of the dimensions has a matrix transform, it should be listed first
      ## for optimum speed. This is due to the BLAS API. The API can do the
      ## matrix transform with one function call if the matrix transform
      ## dimension is first; otherwise it needs N calls where N is the
      ## number of points in the dimension.
      ##
      ## Since users may not be aware of this, warn them if they aren't
      ## putting the matrix transform dimension first.

      if len(dimensionElements) >= 2:

        firstDimensionTransformIsMMT = False
        matrixTransformPresent = False

        # Check if any of the dimensions have a matrix transform
        for dimension in geometryTemplate.transverseDimensions:
          if isinstance(dimension.transform, Transforms.MMT.MMT):
            matrixTransformPresent = True

        # Does the *first* transverse dimension have a matrix transform?
        if isinstance(geometryTemplate.transverseDimensions[0].transform, Transforms.MMT.MMT):
          firstDimensionTransformIsMMT = True

        if matrixTransformPresent == True and not firstDimensionTransformIsMMT:
          print()
          parserWarning(transverseDimensionsElement,
                        "If using both matrix transforms (e.g. bessel, spherical-bessel, bessel-neumann, " 
                        "hermite-gauss, ...) and non-matrix transforms (none, dft, dct, dst), the "
                        "first transverse dimension should be one of the matrix transform dimensions "
                        "for optimum speed.\n"
                        "Unless you're sure you know what you're doing, you should consider "
                        "re-ordering your transverse dimensions.")
          print()
 

    ## End of "if transverseDimensionsElement" block

    
    driver = self.globalNameSpace['features']['Driver']
    if isinstance(driver, DistributedMPIDriverTemplate):
      transverseDimensions = geometryTemplate.dimensions[1:]
      mpiTransform = transverseDimensions[0].transform
      if not mpiTransform.isMPICapable:
        mpiTransform = transformMultiplexer.transformWithName('mpi')
      mpiTransform.initialiseForMPIWithDimensions(transverseDimensions)
    
    return geometryTemplate
  
  def parseVectorElements(self, parentElement):
    vectorElements = parentElement.getChildElementsByTagName('vector', optional=True)
    for vectorElement in vectorElements:
      vectorTemplate = self.parseVectorElement(vectorElement)
  
  def parseVectorElement(self, vectorElement):
    if not vectorElement.hasAttribute('dimensions'):
      dimensionNames = self.globalNameSpace['geometry'].primaryTransverseDimensionNames
    elif len(vectorElement.getAttribute('dimensions').strip()) == 0:
      # No dimensions
      dimensionNames = []
    else:
      dimensionsString = vectorElement.getAttribute('dimensions').strip()
      dimensionNames = Utilities.symbolsInString(dimensionsString, xmlElement = vectorElement)
      if not dimensionNames:
        raise ParserException(vectorElement, "Cannot understand '%(dimensionsString)s' as a "
                                            "list of dimensions" % locals())
        
    
    fieldTemplate = FieldElementTemplate.sortedFieldWithDimensionNames(dimensionNames, xmlElement = vectorElement)
    
    if not vectorElement.hasAttribute('name') or len(vectorElement.getAttribute('name')) == 0:
      raise ParserException(vectorElement, "Each vector element must have a non-empty 'name' attribute")
    
    vectorName = vectorElement.getAttribute('name')
    if not vectorName == Utilities.symbolInString(vectorName, xmlElement = vectorElement):
      raise ParserException(vectorElement, "'%(vectorName)s' is not a valid name for a vector.\n"
                                           "The name must not start with a number and can only contain letters, numbers and underscores." % locals())
    
    # Check that this vector name is unique
    for field in self.globalNameSpace['fields']:
      if len([x for x in field.vectors if x.name == vectorName]) > 0:
        raise ParserException(vectorElement, "Vector name '%(vectorName)s' conflicts with a "
                                             "previously defined vector of the same name" % locals())
    
    ## Check that the name isn't already taken
    if vectorName in self.globalNameSpace['symbolNames']:
      raise ParserException(vectorElement, "Vector name '%(vectorName)s' conflicts with previously "
                                          "defined symbol of the same name." % locals())
    
    ## Make sure no-one else takes the name
    self.globalNameSpace['symbolNames'].add(vectorName)
    
    # Backwards compatibility
    if vectorElement.hasAttribute('initial_space'):
      basis_string = vectorElement.getAttribute('initial_space')
      vectorElement.setAttribute('initial_basis', basis_string)
    
    if vectorElement.hasAttribute('initial_basis'):
      initialBasis = fieldTemplate.basisFromString(
        vectorElement.getAttribute('initial_basis'),
        xmlElement = vectorElement
      )
    else:
      initialBasis = fieldTemplate.defaultCoordinateBasis
    
    typeString = None
    if vectorElement.hasAttribute('type'):
      typeString = vectorElement.getAttribute('type').lower()
    
    if typeString in (None, 'complex'):
      typeString = 'complex'
    elif typeString == 'real':
      typeString = 'real'
    else:
      raise ParserException(
        vectorElement,
        "Unknown type '%(typeString)s'. "
        "Options are 'complex' (default), or 'real'" % locals()
      )
    
    vectorTemplate = VectorElementTemplate(
      name = vectorName, field = fieldTemplate, initialBasis = initialBasis,
      type = typeString, xmlElement = vectorElement,
      **self.argumentsToTemplateConstructors
    )
    
    self.globalNameSpace['simulationVectors'].append(vectorTemplate)
    
    componentsElement = vectorElement.getChildElementByTagName('components')
    
    componentsString = componentsElement.innerText()
    if not componentsString:
      raise ParserException(componentsElement, "The components element must not be empty")
    
    results = Utilities.symbolsInString(componentsString, componentsElement)
    
    if not results:
      raise ParserException(componentsElement, "Could not extract component names from component string "
                                               "'%(componentsString)s'." % locals())
    
    for componentName in results:
      if componentName in self.globalNameSpace['symbolNames']:
        raise ParserException(componentsElement, "Component name '%(componentName)s' conflicts with "
                                                 "a previously-defined symbol of the same name." % locals())
      self.globalNameSpace['symbolNames'].add(componentName)
      
      vectorTemplate.components.append(componentName)
    
    initialisationElement = vectorElement.getChildElementByTagName('initialisation', optional=True)
    
    if initialisationElement:
      initialisationTemplate = vectorTemplate.initialiser
      kindString = None
      if initialisationElement.hasAttribute('kind'):
        kindString = initialisationElement.getAttribute('kind').lower()
      
      def createInitialisationCodeBlock():
        initialisationCodeBlock = _UserLoopCodeBlock(
          field = vectorTemplate.field, xmlElement = initialisationElement,
          basis = vectorTemplate.initialBasis, parent = initialisationTemplate,
          **self.argumentsToTemplateConstructors)
        initialisationCodeBlock.dependenciesEntity = self.parseDependencies(initialisationElement, optional=True)
        initialisationCodeBlock.targetVector = vectorTemplate
        return initialisationCodeBlock
      
      
      if kindString in (None, 'code'):
        initialisationTemplate = VectorInitialisationFromCDATATemplate(parent = vectorTemplate, xmlElement=initialisationElement,
                                                                       **self.argumentsToTemplateConstructors)
        initialisationCodeBlock = createInitialisationCodeBlock()
        initialisationTemplate.codeBlocks['initialisation'] = initialisationCodeBlock
        
        if len(initialisationCodeBlock.codeString) == 0:
          raise ParserException(initialisationElement, "Empty initialisation code in 'code' initialisation element.")
      elif kindString == 'zero':
        initialisationTemplate = vectorTemplate.initialiser
      elif kindString in ['xsil', 'hdf5']:
        if kindString == 'xsil':
          initialisationTemplateClass = VectorInitialisationFromXSILTemplate
        elif kindString == 'hdf5':
          initialisationTemplateClass = VectorInitialisationFromHDF5Template
        initialisationTemplate = initialisationTemplateClass(parent = vectorTemplate, xmlElement=initialisationElement,
                                                             **self.argumentsToTemplateConstructors)
        geometryMatchingMode = 'strict'
        if initialisationElement.hasAttribute('geometry_matching_mode'):
          geometryMatchingMode = initialisationElement.getAttribute('geometry_matching_mode').strip().lower()
          if not geometryMatchingMode in ('strict', 'loose'):
            raise ParserException(initialisationElement, "The geometry matching mode for XSIL/HDF5 import must either be 'strict' or 'loose'.")
        initialisationTemplate.geometryMatchingMode = geometryMatchingMode
        
        filenameElement = initialisationElement.getChildElementByTagName('filename')

        if kindString == 'xsil':
          momentGroupName = 'NULL'
          if filenameElement.hasAttribute('group'):
            momentGroupName = 'moment_group_' + filenameElement.getAttribute('group').strip()
          initialisationTemplate.momentGroupName = momentGroupName
        elif kindString == 'hdf5':
          groupName = None
          if filenameElement.hasAttribute('group'):
            groupName = filenameElement.getAttribute('group').strip()
          initialisationTemplate.groupName = groupName
        
        initialisationTemplate.codeBlocks['initialisation'] = createInitialisationCodeBlock()
        
        filename = filenameElement.innerText()
        if filename.isspace():
          raise ParserException(filenameElement, "The contents of the filename tag must be non-empty.")
        
        initialisationTemplate.filename = filename
        
      else:
        raise ParserException(initialisationElement, "Initialisation kind '%(kindString)s' is unrecognised.\n"
                                                     "The options are 'code' (default), 'hdf5', 'xsil', or 'zero' "
                                                     "(this is the same as having no initialisation element)." % locals())
      
      # Untie the old initialiser from the vector
      # Probably not strictly necessary
      if not vectorTemplate.initialiser == initialisationTemplate:
        vectorTemplate.initialiser.vector = None
        vectorTemplate.initialiser.remove()
      initialisationTemplate.vector = vectorTemplate
      vectorTemplate.initialiser = initialisationTemplate
      
      self.parseFeatureAttributes(initialisationElement, initialisationTemplate)
    
    return vectorTemplate
  
  def parseComputedVectorElements(self, parentElement, parentTemplate):
    results = []
    computedVectorElements = parentElement.getChildElementsByTagName('computed_vector', optional=True)
    for computedVectorElement in computedVectorElements:
      # Add the computed vector template to the results
      results.append(self.parseComputedVectorElement(computedVectorElement, parentTemplate))
    
    return results
  
  def parseComputedVectorElement(self, computedVectorElement, parentTemplate):
    if not computedVectorElement.hasAttribute('name') or len(computedVectorElement.getAttribute('name')) == 0:
      raise ParserException(computedVectorElement, "Each computed vector element must have a non-empty 'name' attribute")
    
    vectorName = computedVectorElement.getAttribute('name')
    
    # Check that this vector name is unique
    for field in self.globalNameSpace['fields']:
      if len([x for x in field.vectors if x.name == vectorName]) > 0:
        raise ParserException(computedVectorElement, "Computed vector name '%(vectorName)s' conflicts with a "
                                                     "previously defined vector of the same name" % locals())
    
    ## Check that the name isn't already taken
    if vectorName in self.globalNameSpace['symbolNames']:
      raise ParserException(computedVectorElement, "Computed vector name '%(vectorName)s' conflicts with previously "
                                                   "defined symbol of the same name." % locals())
    
    ## Make sure no-one else takes the name
    self.globalNameSpace['symbolNames'].add(vectorName)
    
    if not computedVectorElement.hasAttribute('dimensions'):
      dimensionNames = self.globalNameSpace['geometry'].primaryTransverseDimensionNames
    elif len(computedVectorElement.getAttribute('dimensions').strip()) == 0:
      # No dimensions
      dimensionNames = []
    else:
      dimensionsString = computedVectorElement.getAttribute('dimensions').strip()
      dimensionNames = Utilities.symbolsInString(dimensionsString, xmlElement = computedVectorElement)
      if not dimensionNames:
        raise ParserException(computedVectorElement, "Cannot understand '%(dimensionsString)s' as a "
                                                     "list of dimensions" % locals())
        
    
    fieldTemplate = FieldElementTemplate.sortedFieldWithDimensionNames(dimensionNames, xmlElement = computedVectorElement)
    
    typeString = None
    if computedVectorElement.hasAttribute('type'):
      typeString = computedVectorElement.getAttribute('type').lower()
    
    if typeString in (None, 'complex'):
      typeString = 'complex'
    elif typeString == 'real':
      typeString = 'real'
    else:
      raise ParserException(
        computedVectorElement,
        "Unknown type '%(typeString)s'. "
        "Options are 'complex' (default), or 'real'" % locals()
      )
    
    if parentTemplate is None:
      parentTemplate = fieldTemplate
    # One way or another, we now have our fieldTemplate
    # So we can now construct the computed vector template
    vectorTemplate = ComputedVectorTemplate(name = vectorName, field = fieldTemplate,
                                            parent = parentTemplate, type = typeString,
                                            xmlElement = computedVectorElement,
                                            **self.argumentsToTemplateConstructors)
    
    self.globalNameSpace['simulationVectors'].append(vectorTemplate)
    
    componentsElement = computedVectorElement.getChildElementByTagName('components')
    
    
    componentsString = componentsElement.innerText()
    if not componentsString:
      raise ParserException(componentsElement, "The components element must not be empty")
    
    results = Utilities.symbolsInString(componentsString, componentsElement)
    
    if not results:
      raise ParserException(componentsElement, "Could not extract component names from component string "
                                               "'%(componentsString)s'." % locals())
    
    for componentName in results:
      if componentName in self.globalNameSpace['symbolNames']:
        raise ParserException(componentsElement, "Component name '%(componentName)s' conflicts with "
                                                 "a previously-defined symbol of the same name." % locals())
      self.globalNameSpace['symbolNames'].add(componentName)
      
      vectorTemplate.components.append(componentName)
    
    evaluationElement = computedVectorElement.getChildElementByTagName('evaluation')
    evaluationCodeBlock = _UserLoopCodeBlock(field = None, xmlElement = evaluationElement,
                                             parent = vectorTemplate, **self.argumentsToTemplateConstructors)
    evaluationCodeBlock.dependenciesEntity = self.parseDependencies(evaluationElement, optional=True)
    evaluationCodeBlock.targetVector = vectorTemplate
    vectorTemplate.codeBlocks['evaluation'] = evaluationCodeBlock
    
    self.parseFeatureAttributes(evaluationElement, vectorTemplate)
    
    return vectorTemplate
  
  
  def parseNoiseVectorElements(self, parentElement, parentTemplate):
    results = []
    noiseVectorElements = parentElement.getChildElementsByTagName('noise_vector', optional=True)
    for noiseVectorElement in noiseVectorElements:
      # Add the noise vector template to the results
      results.append(self.parseNoiseVectorElement(noiseVectorElement, parentTemplate))
    
    if noiseVectorElements and not 'Stochastic' in self.globalNameSpace['features']:
      Features.Stochastic.Stochastic(parent = self.simulation, **self.argumentsToTemplateConstructors)
    
    
    return results
  
  def parseNoiseVectorElement(self, noiseVectorElement, parentTemplate):
    if not noiseVectorElement.hasAttribute('name') or len(noiseVectorElement.getAttribute('name')) == 0:
      raise ParserException(noiseVectorElement, "Each noise vector element must have a non-empty 'name' attribute")
    
    vectorName = noiseVectorElement.getAttribute('name')
    
    # Check that this vector name is unique
    for field in self.globalNameSpace['fields']:
      if len([x for x in field.vectors if x.name == vectorName]) > 0:
        raise ParserException(noiseVectorElement, "Noise vector name '%(vectorName)s' conflicts with a "
                                                     "previously defined vector of the same name" % locals())
    
    ## Check that the name isn't already taken
    if vectorName in self.globalNameSpace['symbolNames']:
      raise ParserException(noiseVectorElement, "Noise vector name '%(vectorName)s' conflicts with previously "
                                                   "defined symbol of the same name." % locals())
    
    ## Make sure no-one else takes the name
    self.globalNameSpace['symbolNames'].add(vectorName)
    
    if not noiseVectorElement.hasAttribute('dimensions'):
      dimensionNames = self.globalNameSpace['geometry'].primaryTransverseDimensionNames
    elif len(noiseVectorElement.getAttribute('dimensions').strip()) == 0:
      # No dimensions
      dimensionNames = []
    else:
      dimensionsString = noiseVectorElement.getAttribute('dimensions').strip()
      dimensionNames = Utilities.symbolsInString(dimensionsString, xmlElement = noiseVectorElement)
      if not dimensionNames:
        raise ParserException(noiseVectorElement, "Cannot understand '%(dimensionsString)s' as a "
                                                     "list of dimensions" % locals())
    
    
    fieldTemplate = FieldElementTemplate.sortedFieldWithDimensionNames(dimensionNames, xmlElement = noiseVectorElement)

    # Backwards compatibility
    if noiseVectorElement.hasAttribute('initial_space'):
      basis_string = noiseVectorElement.getAttribute('initial_space')
      noiseVectorElement.setAttribute('initial_basis', basis_string)
    
    if noiseVectorElement.hasAttribute('initial_basis'):
      initialBasis = fieldTemplate.basisFromString(
          noiseVectorElement.getAttribute('initial_basis'),
          xmlElement = noiseVectorElement
      )
    else:
      initialBasis = fieldTemplate.defaultCoordinateBasis
    
    typeString = None
    if noiseVectorElement.hasAttribute('type'):
      typeString = noiseVectorElement.getAttribute('type').lower()
    
    if not noiseVectorElement.hasAttribute('kind') or len(noiseVectorElement.getAttribute('kind')) == 0:
      raise ParserException(noiseVectorElement, "Each noise vector element must have a non-empty 'kind' attribute")
    
    vectorKind = noiseVectorElement.getAttribute('kind').strip().lower()
    vectorMethod = None
    if noiseVectorElement.hasAttribute('method'):
      vectorMethod = noiseVectorElement.getAttribute('method').lower()
    else:
      vectorMethod = 'posix'
    
    randomVariableClass = None
    generatorClass = None
    static = None
    randomVariableAttributeDictionary = dict()
    
    if vectorKind in ('gauss', 'gaussian', 'wiener'):
      static = True
      if vectorKind == 'wiener':
        static = False
      randomVariableClass, generatorClass = {
        'mkl': (GaussianMKLRandomVariable, MKLGenerator),
        'dsfmt': (GaussianBoxMuellerRandomVariable, DSFMTGenerator),
        'posix': (GaussianBoxMuellerRandomVariable, POSIXGenerator),
        'solirte': (GaussianSolirteRandomVariable, SolirteGenerator),
      }.get(vectorMethod,(None,None))
      if not generatorClass:
        raise ParserException(noiseVectorElement, "Method '%(vectorMethod)s' for Gaussian noises is unknown.  Legal possibilities include 'mkl', 'dsfmt', 'posix' and 'solirte'." % locals())
    
    elif vectorKind == 'uniform':
      static = True
      randomVariableClass = UniformRandomVariable
      generatorClass = {
        'mkl': MKLGenerator,
        'dsfmt': DSFMTGenerator,
        'posix': POSIXGenerator,
        'solirte': SolirteGenerator,
      }.get(vectorMethod)
      if not generatorClass:
        raise ParserException(noiseVectorElement, "Method '%(vectorMethod)s' for uniform noises is unknown." % locals())
    
    elif vectorKind in ('poissonian','jump'):
      if typeString == 'complex':
        raise ParserException(noiseVectorElement, "Poissonian noises cannot be complex-valued.")        
      randomVariableClass = PoissonianRandomVariable
      if vectorKind == 'jump':
        static = False
        if noiseVectorElement.hasAttribute('mean-rate'):
          meanRateString = noiseVectorElement.getAttribute('mean-rate')
          meanRateAttributeName = 'mean-rate'
        else:  
          raise ParserException(noiseVectorElement, "Jump noises must specify a 'mean-rate' attribute.")
      elif vectorKind == 'poissonian':
        static = True
        if noiseVectorElement.hasAttribute('mean-density'):
          meanRateString = noiseVectorElement.getAttribute('mean-density')
          meanRateAttributeName = 'mean-density'
        elif noiseVectorElement.hasAttribute('mean'):
          meanRateString = noiseVectorElement.getAttribute('mean')
          meanRateAttributeName = 'mean'
        else:  
          raise ParserException(noiseVectorElement, "Poissonian noise must specify a 'mean-density' or 'mean' attribute.")
          
      if vectorMethod == 'posix': 
        generatorClass = POSIXGenerator
      elif vectorMethod == 'dsfmt':
          generatorClass = DSFMTGenerator
      else:
        raise ParserException(noiseVectorElement, "Method '%(vectorMethod)s' for Poissonian and Jump noises is unknown." % locals())
      
      try:
        meanRate = float(meanRateString) # Is it a simple number?
        if meanRate < 0.0:               # Was the number positive?
          raise ParserException(noiseVectorElement, "The %(meanRateAttributeName)s for Poissonian noises must be positive." % locals())
      except ValueError as err:
        # We could just barf now, but it could be valid code, and there's no way we can know.
        # But we only accept code for this value when we have a validation element with a 
        # run-time kind of validation check
        if 'Validation' in self.globalNameSpace['features']:
          validationFeature = self.globalNameSpace['features']['Validation']
          validationFeature.validationChecks.append("""
          if (%(meanRateString)s < 0.0)
            _LOG(_ERROR_LOG_LEVEL, "ERROR: The %(meanRateAttributeName)s for Poissonian noise %(vectorName)s is not positive!\\n"
                                   "Mean-rate = %%e\\n", %(meanRateString)s);""" % locals())
        else:
          raise ParserException(
            noiseVectorElement,
            "Unable to understand '%(meanRateString)s' as a positive real value. "
            "Use the feature <validation kind=\"run-time\"/> to allow for arbitrary code." % locals()
          )
      randomVariableAttributeDictionary['noiseMeanRate'] = meanRateString
    else:
      raise ParserException(noiseVectorElement, "Unknown noise kind '%(kind)s'." % locals())
    
    if static is None:
      raise ParserException(
          noiseVectorElement, 
          "Internal error: Noise type is not defined as static or dynamic. "
          "Please report this error to %s." % self.globalNameSpace['bugReportAddress'])
    
    if typeString in (None, 'complex'):
      typeString = 'complex'
    elif typeString == 'real':
      typeString = 'real'
    else:
      raise ParserException(noiseVectorElement,
        "Unknown type '%(typeString)s'. "
        "Options are 'complex' (default), or 'real'" % locals()
      )
    
    if parentTemplate is None:
      parentTemplate = fieldTemplate
    # One way or another, we now have our fieldTemplate
    # So we can now construct the noise vector template
    vectorTemplate = NoiseVectorTemplate(
      name = vectorName, field = fieldTemplate, staticNoise = static,
      parent = parentTemplate, initialBasis = initialBasis,
      type = typeString, xmlElement = noiseVectorElement,
      **self.argumentsToTemplateConstructors
    )
    
    self.globalNameSpace['simulationVectors'].append(vectorTemplate)
    
    
    componentsElement = noiseVectorElement.getChildElementByTagName('components')
    
    componentsString = componentsElement.innerText()
    if not componentsString:
      raise ParserException(componentsElement, "The components element must not be empty")
    
    results = Utilities.symbolsInString(componentsString, componentsElement)
    
    if not results:
      raise ParserException(componentsElement, "Could not extract component names from component string "
                                               "'%(componentsString)s'." % locals())
    
    for componentName in results:
      if componentName in self.globalNameSpace['symbolNames']:
        raise ParserException(componentsElement, "Component name '%(componentName)s' conflicts with "
                                                 "a previously-defined symbol of the same name." % locals())
      self.globalNameSpace['symbolNames'].add(componentName)
    
      vectorTemplate.components.append(componentName)
      
    randomVariable = randomVariableClass(parent = vectorTemplate, **self.argumentsToTemplateConstructors)
    vectorTemplate._children.append(randomVariable)
    generator = generatorClass(parent = randomVariable, **self.argumentsToTemplateConstructors)
    randomVariable._children.append(generator)
    
    self.applyAttributeDictionaryToObject(randomVariableAttributeDictionary, randomVariable)
    
    generator.seedArray = []
    if noiseVectorElement.hasAttribute('seed'):
      seedStringList = noiseVectorElement.getAttribute('seed').split()
      for seedString in seedStringList:
        try:
          seedInt = int(seedString)
          if seedInt < 0:
            raise ParserException(noiseVectorElement, "Seeds must be positive integers." % locals())
        except ValueError as err:
          if 'Validation' in self.globalNameSpace['features']:
            validationFeature = self.globalNameSpace['features']['Validation']
            validationFeature.validationChecks.append("""
            if (%(seedString)s < 0)
              _LOG(_ERROR_LOG_LEVEL, "ERROR: The seed for this noise vector is not positive!\\n"
              "Seed = %%d\\n", %(seedString)s);""" % locals())
          else:
            raise ParserException(noiseVectorElement, "Unable to understand seed '%(seedString)s' as a positive integer. Use the feature <validation kind=\"run-time\"/> to allow for arbitrary code." % locals())
      generator.seedArray = seedStringList
      
    generator.generatorName = '_gen_'+vectorName
    randomVariable.generator = generator
      
    vectorTemplate.randomVariable = randomVariable

    return vectorTemplate


  def parseTopLevelSequenceElement(self, simulationElement):
    topLevelSequenceElement = simulationElement.getChildElementByTagName('sequence')
    
    topLevelSequenceElementTemplate = TopLevelSequenceElementTemplate(**self.argumentsToTemplateConstructors)
    
    self.parseSequenceElement(topLevelSequenceElement, topLevelSequenceElementTemplate)
  
  def parseSequenceElement(self, sequenceElement, sequenceTemplate):
    if sequenceElement.hasAttribute('cycles'):
      cyclesString = sequenceElement.getAttribute('cycles')
      try:
        cycles = int(cyclesString)
      except ValueError as err:
        raise ParserException(sequenceElement, "Unable to understand '%(cyclesString)s' as an integer.")
      
      if cycles <= 0:
        raise ParserException(sequenceElement, "The number of cycles must be positive.")
      
      sequenceTemplate.localCycles = cycles
    
    for childNode in sequenceElement.childNodes:
      if not childNode.nodeType == minidom.Node.ELEMENT_NODE:
        continue
      
      tagName = childNode.tagName.lower()
      
      if tagName == 'integrate':
        integrateTemplate = self.parseIntegrateElement(childNode)
        sequenceTemplate.addSegment(integrateTemplate)
      elif tagName == 'filter':
        # Construct the filter segment
        filterSegmentTemplate = FilterSegmentTemplate(xmlElement = childNode,
                                                      **self.argumentsToTemplateConstructors)
        # Add it to the sequence element as a child segment
        sequenceTemplate.addSegment(filterSegmentTemplate)
        # Create an operator container to house the filter operator
        operatorContainer = OperatorContainerTemplate(parent = filterSegmentTemplate,
                                                      **self.argumentsToTemplateConstructors)
        # Add the operator container to the filter segment
        filterSegmentTemplate.operatorContainers.append(operatorContainer)
        # parse the filter operator
        filterOperator = self.parseFilterOperator(childNode, operatorContainer, forceOnlyWhenCalled = False)
      elif tagName == 'breakpoint':
        # Construct the breakpoint segment
        breakpointSegmentTemplate = BreakpointSegmentTemplate(xmlElement = childNode,
                                                              **self.argumentsToTemplateConstructors)
        # Add it to the sequence element as a child segment
        sequenceTemplate.addSegment(breakpointSegmentTemplate)
        # parse a dependencies element
        breakpointSegmentTemplate.dependenciesEntity = self.parseDependencies(childNode)
        
        if childNode.hasAttribute('filename'):
          breakpointSegmentTemplate.filename = childNode.getAttribute('filename').strip()
        else:
          parserWarning(childNode, "Breakpoint names defaulting to the sequence 1.xsil, 2.xsil, etc.")
        
        if childNode.hasAttribute('format'):
          formatString = childNode.getAttribute('format').strip().lower()
          outputFormatClass = Features.OutputFormat.OutputFormat.outputFormatClasses.get(formatString)
          if not outputFormatClass:
            validFormats = ', '.join(["'%s'" % formatName for formatName in list(Features.OutputFormat.OutputFormat.outputFormatClasses.keys())])
            raise ParserException(childNode, "Breakpoint format attribute '%(formatString)s' unknown.\n"
                                             "The valid formats are %(validFormats)s." % locals())
          outputFormat = outputFormatClass(parent = breakpointSegmentTemplate, **self.argumentsToTemplateConstructors)
          
          breakpointSegmentTemplate.outputFormat = outputFormat
      
      elif tagName == 'sequence':
        # Construct the sequence segment
        sequenceSegmentTemplate = SequenceSegmentTemplate(**self.argumentsToTemplateConstructors)
        sequenceTemplate.addSegment(sequenceSegmentTemplate)
        
        self.parseSequenceElement(childNode, sequenceSegmentTemplate)
      else:
        raise ParserException(childNode, "Unknown child of sequence element. "
                                         "Possible children include 'sequence', 'integrate', 'filter' or 'breakpoint' elements.")
    
  
  def parseIntegrateElement(self, integrateElement):
    if not integrateElement.hasAttribute('algorithm'):
      raise ParserException(integrateElement, "Integration element must have an 'algorithm' attribute.")
    
    integratorTemplateClass = None
    stepperTemplateClass = None
    algorithmSpecificOptionsDict = dict()
    
    algorithmString = integrateElement.getAttribute('algorithm')
    algorithmMap = {
      'SI':    (Integrators.FixedStep.FixedStep,                   Integrators.SIStepper.SIStepper),
      'RK4':   (Integrators.FixedStep.FixedStep,                   Integrators.RK4Stepper.RK4Stepper),
      'RK9':   (Integrators.FixedStep.FixedStep,                   Integrators.RK9Stepper.RK9Stepper),
      'RK45':  (Integrators.FixedStep.FixedStep,                   Integrators.RK45Stepper.RK45Stepper),
      'RK89':  (Integrators.FixedStep.FixedStep,                   Integrators.RK89Stepper.RK89Stepper),
      'ARK45': (Integrators.AdaptiveStep.AdaptiveStep,             Integrators.RK45Stepper.RK45Stepper),
      'ARK89': (Integrators.AdaptiveStep.AdaptiveStep,             Integrators.RK89Stepper.RK89Stepper),
      'SIC':   (Integrators.FixedStepWithCross.FixedStepWithCross, Integrators.SICStepper.SICStepper),
      'MM':    (Integrators.FixedStep.FixedStep, Integrators.MMStepper.MMStepper),
      'REMM':  (Integrators.RichardsonFixedStep.RichardsonFixedStep, Integrators.MMStepper.MMStepper),
      'BS':    (Integrators.RichardsonFixedStep.RichardsonFixedStep, Integrators.MMStepper.MMStepper), # Synonym for REMM
      'RERK4': (Integrators.RichardsonFixedStep.RichardsonFixedStep, Integrators.RK4Stepper.RK4Stepper),
      'RERK9': (Integrators.RichardsonFixedStep.RichardsonFixedStep, Integrators.RK9Stepper.RK9Stepper),
      'RESI':  (Integrators.RichardsonFixedStep.RichardsonFixedStep, Integrators.SIStepper.SIStepper),
    }
    integratorTemplateClass, stepperTemplateClass = algorithmMap.get(algorithmString, (None, None))
    
    if not integratorTemplateClass:
      raise ParserException(
        integrateElement,
        "Unknown algorithm '%s'. "
        "Options are %s." % (algorithmString, ', '.join(list(algorithmMap.keys()))))

    
    if algorithmString == 'RK45':
      parserWarning(
        integrateElement,
        "RK45 is probably not the algorithm you want. RK45 is a 5th-order algorithm with embedded 4th-order "
        "where the 4th-order results are just thrown away. Unless you know what you are doing, you probably meant RK4 or ARK45."
      )
    elif algorithmString == 'RK89':
      parserWarning(
        integrateElement,
        "RK89 is probably not the algorithm you want. RK89 is a 9th-order algorithm with embedded 8th-order "
        "where the 8th-order results are just thrown away. Unless you know what you are doing, you probably meant RK9 or ARK89."
      )
    elif algorithmString == 'MM':
      parserWarning(
        integrateElement,
        "You have selected the Modified Midpoint Stepper directly. To use the full functionality of this "
        "stepper, use 'REMM' instead, which is Richardson Extrapolation using the Modified Midpoint Stepper."
      )  
    elif algorithmString in ['SI','SIC']:
      if integrateElement.hasAttribute('iterations'):
        algorithmSpecificOptionsDict['iterations'] = RegularExpressionStrings.integerInString(integrateElement.getAttribute('iterations'))
        if algorithmSpecificOptionsDict['iterations'] < 1:
          raise ParserException(integrateElement, "Iterations element must be 1 or greater (default 3).")
    
    integratorTemplate = integratorTemplateClass(stepperClass = stepperTemplateClass, **self.argumentsToTemplateConstructors)
    self.applyAttributeDictionaryToObject(algorithmSpecificOptionsDict, stepperTemplateClass)
    
    if integrateElement.hasAttribute('home_space'):
      attributeValue = integrateElement.getAttribute('home_space').strip().lower()
      if attributeValue == 'k':
        integratorTemplate.homeBasis = self.globalNameSpace['geometry'].defaultSpectralBasis
      elif attributeValue == 'x':
        integratorTemplate.homeBasis = self.globalNameSpace['geometry'].defaultCoordinateBasis
      else:
        raise ParserException(integrateElement, "home_space must be either 'k' or 'x'.")
    else:
      integratorTemplate.homeBasis = self.globalNameSpace['geometry'].defaultCoordinateBasis
    
    if issubclass(integratorTemplateClass, Integrators.AdaptiveStep.AdaptiveStep):
      if not integrateElement.hasAttribute('tolerance'):
        raise ParserException(integrateElement, "Adaptive integrators need a 'tolerance' attribute.")
      else:
        toleranceString = integrateElement.getAttribute('tolerance').strip()
        try:
          tolerance = float(toleranceString)
          if tolerance <= 0.0:
            raise ParserException(integrateElement, "Tolerance must be positive.")
          minTolerance = {'single': 2**-21, 'double': 2**-50}[self.globalNameSpace['precision']]
          if 'ErrorCheck' in self.globalNameSpace['features']:
            minTolerance *= 16
          if tolerance < minTolerance:
            raise ParserException(
              integrateElement,
              "Requested integration tolerance '%s' is smaller than the machine precision for %s precision arithmetic %.1e." % (toleranceString, self.globalNameSpace['precision'], minTolerance)
            )
        except ValueError as err:
          raise ParserException(integrateElement, "Could not understand tolerance '%(toleranceString)s' "
                                                  "as a number." % locals())
        
        integratorTemplate.tolerance = tolerance
      
      # FIXME: The adaptive integrators need both an absolute and a relative cutoff
      if not integrateElement.hasAttribute('cutoff'):
        pass
      else:
        cutoffString = integrateElement.getAttribute('cutoff').strip()
        try:
          cutoff = float(cutoffString)
          if not 0.0 < cutoff <= 1.0:
            raise ParserException(integrateElement, "Cutoff must be in the range (0.0, 1.0].")
        except ValueError as err:
          raise ParserException(integrateElement, "Could not understand cutoff '%(cutoffString)s' "
                                                  "as a number." % locals())
        integratorTemplate.cutoff = cutoff
        
    if integrateElement.hasAttribute('extrapolations'):
      if isinstance(integratorTemplate, Integrators.RichardsonFixedStep.RichardsonFixedStep):
        extrapolations = RegularExpressionStrings.integerInString(integrateElement.getAttribute('extrapolations'))
        if extrapolations < 1:
          raise ParserException(integrateElement, "Extrapolations element must be 1 or greater (default 4).")
        else:
          integratorTemplate.extrapolations = extrapolations
      else:
        parserWarning(
          integrateElement,
          "Extrapolations attribute is only applicable to fixed step Richardson Extrapolation integrators (including \'BS\'). "
          "This attribute will been ignored."
        )
          
    if not integrateElement.hasAttribute('interval'):
      raise ParserException(integrateElement, "Integrator needs 'interval' attribute.")
    
    intervalString = integrateElement.getAttribute('interval')
    # Now check if the interval is a valid number or variable
    try:
      interval = float(intervalString) # Is it a simple number?
      if interval <= 0.0:              # Was the number positive?
        raise ParserException(integrateElement, "Interval must be positive.")
    except ValueError as err:
      # We could just barf now, but it could be valid code, and there's no way we can know.
      # But we only accept code for this value when we have a validation element with a 
      # run-time kind of validation check
      if 'Validation' in self.globalNameSpace['features']:
        validationFeature = self.globalNameSpace['features']['Validation']
        segmentNumber = integratorTemplate.segmentNumber
        validationFeature.validationChecks.append("""
        if (%(intervalString)s <= 0.0)
          _LOG(_ERROR_LOG_LEVEL, "ERROR: The interval for segment %(segmentNumber)i is not positive!\\n"
                                 "Interval = %%e\\n", %(intervalString)s);""" % locals())
      else:
        raise ParserException(integrateElement, "Could not understand interval '%(intervalString)s' "
                                                "as a number. Use the feature <validation kind=\"run-time\"/> to allow for arbitrary code." % locals())
    
    integratorTemplate.interval = intervalString
    
    if not integrateElement.hasAttribute('steps') and isinstance(integratorTemplate, Integrators.FixedStep.FixedStep):
      raise ParserException(integrateElement, "Fixed-step integrators require a 'steps' attribute.")
    
    if integrateElement.hasAttribute('steps'):
      stepsString = integrateElement.getAttribute('steps').strip()
      if not stepsString.isdigit():
        raise ParserException(integrateElement, "Could not understand steps '%(stepsString)s' "
                                                "as a positive integer." % locals())
      
      steps = int(stepsString)
      integratorTemplate.stepCount = steps
    else:
      # There is no steps attribute, but we didn't barf at the check above for fixed step integrators.
      # Therefore we have an adaptive stepper with no steps specified.
      # This can cause problems as this means the initial step will be taken as the entire
      # integration interval. 
      # To fix this, give a plausible number of steps.
      integratorTemplate.stepCount = 1000;


    samplesElement = integrateElement.getChildElementByTagName('samples', optional=True)
    if samplesElement:
        samplesString = samplesElement.innerText()
    
        results = RegularExpressionStrings.integersInString(samplesString)
    
        if not results:
          raise ParserException(samplesElement, "Could not understand '%(samplesString)s' "
                                                "as a list of integers" % locals())
    
        if [x for x in results if x < 0]:
          raise ParserException(samplesElement, "All sample counts must be greater than zero.")
    
        integratorTemplate.samplesEntity = ParsedEntity(samplesElement, results)
    
    integratorTemplate.localVectors.update(self.parseComputedVectorElements(integrateElement, integratorTemplate))
    
    integratorTemplate.localVectors.update(self.parseNoiseVectorElements(integrateElement, integratorTemplate))
    
    self.parseOperatorsElements(integrateElement, integratorTemplate)
    
    self.parseFiltersElements(integrateElement, integratorTemplate)
    
    self.parseFeatureAttributes(integrateElement, integratorTemplate)
    
    return integratorTemplate
  
  def parseFiltersElements(self, integrateElement, integratorTemplate):
    filtersElements = integrateElement.getChildElementsByTagName('filters', optional=True)
    
    for filtersElement in filtersElements:
      filterOperatorContainer = self.parseFilterElements(filtersElement, parent=integratorTemplate)
      
      whereString = None
      if filtersElement.hasAttribute('where'):
        whereString = filtersElement.getAttribute('where').strip().lower()
      if whereString in (None, 'step start'):
        integratorTemplate.stepStartOperatorContainers.append(filterOperatorContainer)
      elif whereString == 'step end':
        integratorTemplate.stepEndOperatorContainers.append(filterOperatorContainer)
      else:
        raise ParserException(filtersElement, "Unknown placement of filters in the 'where' tag of '%(whereString)s'.\n"
                                              "Valid options are: 'step start' (default) or 'step end'." % locals())
    
  def parseFilterElements(self, filtersElement, parent, optional = False):
    filterElements = filtersElement.getChildElementsByTagName('filter', optional = optional)
    
    if filterElements:
      operatorContainer = OperatorContainerTemplate(parent = parent,
                                                    **self.argumentsToTemplateConstructors)
    else:
      operatorContainer = None
    
    for filterElement in filterElements:
      filterTemplate = self.parseFilterOperator(filterElement, operatorContainer, forceOnlyWhenCalled = False)
    
    return operatorContainer
  
  def parseSimulationFilterElements(self, simulationElement, parent):
    filterElements = simulationElement.getChildElementsByTagName('filter', optional = True)
    results =[]
    
    for filterElement in filterElements:
      # Construct the filter segment
      filterSegmentTemplate = FilterSegmentTemplate(xmlElement = filterElement,
                                                    **self.argumentsToTemplateConstructors)
      # Create an operator container to house the filter operator
      operatorContainer = OperatorContainerTemplate(parent = filterSegmentTemplate,
                                                    **self.argumentsToTemplateConstructors)
      # Add the operator container to the filter segment
      filterSegmentTemplate.operatorContainers.append(operatorContainer)
      # parse the filter operator
      
      filterOperator = self.parseFilterOperator(filterElement, operatorContainer, forceOnlyWhenCalled = True) 
    
    return results
    
  def parseFilterOperator(self, filterElement, parentTemplate, forceOnlyWhenCalled):
    filterName = filterElement.getAttribute('name')
    
    if filterName:
        ## Check that the name isn't already taken
        if filterName in self.globalNameSpace['symbolNames']:
          raise ParserException(filterElement, "Filter name '%(filterName)s' conflicts with previously "
                                                       "defined symbol of the same name." % locals())
    
        ## Make sure no-one else takes the name
        self.globalNameSpace['symbolNames'].add(filterName)
    
    
    filterTemplate = FilterOperatorTemplate(parent = parentTemplate,
                                            xmlElement = filterElement, name = filterName,
                                            **self.argumentsToTemplateConstructors)
    
    if filterElement.hasAttribute('only_when_called'):
      if not filterName:
          raise ParserException(filterElement, "Filters that are only called explicitly must be named.")
      if filterElement.getAttribute('only_when_called').strip().lower() == 'yes':
        filterTemplate.parent.parent.onlyWhenCalled = True
        if not forceOnlyWhenCalled:
            parserWarning(
              filterElement,
              "You have tried to stop this filter activating (using only_when_called = 'yes'), "
              "but you placed that filter where it should be activated. "
              "Have you made an error?"
            )
      elif filterElement.getAttribute('only_when_called').strip().lower() == 'no':
        filterTemplate.parent.parent.onlyWhenCalled = forceOnlyWhenCalled
        if forceOnlyWhenCalled:
            parserWarning(
              filterElement,
              "You have tried to ask this filter to activate in sequence (using only_when_called = 'no'), "
              "but you placed that filter where that does not make sense. "
              "Have you made an error?"
            )
      else:
        raise ParserException(filterElement, "Attribute 'only_when_called' should be either 'yes' or 'no'.")
    else:
        filterTemplate.parent.parent.onlyWhenCalled = forceOnlyWhenCalled
    
    codeBlock = _UserLoopCodeBlock(field = None, xmlElement = filterElement,
                                   parent = filterTemplate, **self.argumentsToTemplateConstructors)
    codeBlock.dependenciesEntity = self.parseDependencies(filterElement, optional=True)
    filterTemplate.codeBlocks['operatorDefinition'] = codeBlock
    
    return filterTemplate
  
  def parseOperatorsElements(self, integrateElement, integratorTemplate):
    operatorsElements = integrateElement.getChildElementsByTagName('operators')
    
    fieldsUsed = []
    
    for operatorsElement in operatorsElements:
      if not operatorsElement.hasAttribute('dimensions'):
        integrationVectorsElement = operatorsElement.getChildElementByTagName('integration_vectors')
        integrationVectorNames = Utilities.symbolsInString(integrationVectorsElement.innerText(), xmlElement = integrationVectorsElement)
        vectorNameMap = dict((v.name, v) for v in self.globalNameSpace['simulationVectors'])
        fields = set()
        for vectorName in integrationVectorNames:
          if not vectorName in vectorNameMap:
            raise ParserException(integrationVectorsElement, "Unknown vector '%s'." % vectorName)
          vector = vectorNameMap[vectorName]
          fields.add(vector.field)
        if not len(fields) == 1:
          raise ParserException(integrationVectorsElement, "All integration vectors must be in the same field!  Integration vectors having different dimensions must be put in separate <operators> blocks with separate <![CDATA[...]]> blocks (within the same integrator).")
        fieldTemplate = list(fields)[0]
      else:
        dimensionNames = Utilities.symbolsInString(operatorsElement.getAttribute('dimensions'), xmlElement = operatorsElement)
        
        fieldTemplate = FieldElementTemplate.sortedFieldWithDimensionNames(dimensionNames, xmlElement = operatorsElement, createIfNeeded = False)
      
      if not fieldTemplate:
        raise ParserException(operatorsElement, "There are no vectors with this combination of dimensions.")
      
      if fieldTemplate in fieldsUsed:
        parserWarning(
          operatorsElement,
          "There is more than one operators elements with this combination of dimensions. "
          "The appropriate checks aren't yet in place to make sure that you aren't shooting yourself in the foot. "
          "Are you sure you meant this?"
        )
      
      fieldsUsed.append(fieldTemplate)
      
      self.parseOperatorsElement(operatorsElement, integratorTemplate, fieldTemplate, count = fieldsUsed.count(fieldTemplate))
    
  
  def parseOperatorsElement(self, operatorsElement, integratorTemplate, fieldTemplate, count = 1):
    if count == 1:
      operatorSuffix = ''
    else:
      operatorSuffix = str(count)
    operatorContainer = OperatorContainerTemplate(field = fieldTemplate, xmlElement = operatorsElement,
                                                  name = fieldTemplate.name + operatorSuffix + '_operators',
                                                  parent = integratorTemplate,
                                                  **self.argumentsToTemplateConstructors)
    integratorTemplate.intraStepOperatorContainers.append(operatorContainer)
    
    self.parseOperatorElements(operatorsElement, operatorContainer, integratorTemplate)
  
  def parseOperatorElements(self, operatorsElement, operatorContainer, integratorTemplate):
    haveHitDeltaAOperator = False
    for childNode in operatorsElement.childNodes:
      if childNode.nodeType == minidom.Node.ELEMENT_NODE and childNode.tagName == 'operator':
        # We have an operator element
        operatorTemplate = self.parseOperatorElement(childNode, operatorContainer)
        
        if haveHitDeltaAOperator and not isinstance(operatorTemplate, (FunctionsOperatorTemplate)):
          raise ParserException(childNode, "You cannot have this kind of operator after the CDATA section\n"
                                           "of the <operators> element. The only operators that can be put\n"
                                           "after the CDATA section are 'functions' operators.")
      
      elif childNode.nodeType == minidom.Node.CDATA_SECTION_NODE:
        deltaAOperatorTemplate = self.parseDeltaAOperator(operatorsElement, operatorContainer)
        haveHitDeltaAOperator = True
    
  
  def parseDeltaAOperator(self, operatorsElement, operatorContainer):
    deltaAOperatorTemplate = DeltaAOperatorTemplate(parent = operatorContainer, xmlElement = operatorsElement,
                                                    **self.argumentsToTemplateConstructors)
    
    integrationVectorsElement = operatorsElement.getChildElementByTagName('integration_vectors')
    if integrationVectorsElement.hasAttribute('basis'):
      basis = operatorContainer.field.basisFromString(integrationVectorsElement.getAttribute('basis'))
    else:
      basis = operatorContainer.field.defaultCoordinateBasis
    
    operatorDefinitionCodeBlock = _UserLoopCodeBlock(
      field = operatorContainer.field, parent = operatorContainer, basis = basis,
      xmlElement = operatorsElement, **self.argumentsToTemplateConstructors)
    operatorDefinitionCodeBlock.dependenciesEntity = self.parseDependencies(operatorsElement, optional=True)
    
    deltaAOperatorTemplate.codeBlocks['operatorDefinition'] = operatorDefinitionCodeBlock
    
    self.parseFeatureAttributes(operatorsElement, deltaAOperatorTemplate)
    
    integrationVectorsNames = Utilities.symbolsInString(integrationVectorsElement.innerText(), xmlElement = integrationVectorsElement)
    
    if not integrationVectorsNames:
      raise ParserException(integrationVectorsElement, "Element must be non-empty.")
    
    deltaAOperatorTemplate.integrationVectorsEntity = ParsedEntity(integrationVectorsElement, integrationVectorsNames)
  
  def parseOperatorElement(self, operatorElement, operatorContainer):
    if not operatorElement.hasAttribute('kind'):
      raise ParserException(operatorElement, "Missing 'kind' attribute.")
    
    kindString = operatorElement.getAttribute('kind').strip().lower()
    
    constantString = None
    if operatorElement.hasAttribute('constant'):
      constantString = operatorElement.getAttribute('constant').strip().lower()
    
    parserMethod = None
    operatorTemplateClass = None
    
    if kindString == 'ip':
      integratorTemplate = operatorContainer.parent
      
      if integratorTemplate.supportsConstantIPOperators and not constantString:
        # Assume that the IP operator is constant
        operatorTemplateClass = ConstantIPOperatorTemplate
      elif not integratorTemplate.supportsConstantIPOperators:
        operatorTemplateClass = NonConstantIPOperatorTemplate
      elif constantString == 'yes':
        operatorTemplateClass = ConstantIPOperatorTemplate
      elif constantString == 'no':
        # We are fixed-step, but non-constant.  Warn the user as this will either be non-optimal, or lower-order than
        # what they expect
        parserWarning(operatorElement, "Using 'constant=no' with an IP operator in a fixed-step integrator is not recommended.  "
                                       "If your IP operator does not depend on the propagation dimension, use 'constant=yes' as this is faster.  "
                                       "If your IP operator does depend on the propagation dimension, be aware that this will almost certainly reduce the order "
                                       "of the integrator, and this is also true if you use an adaptive-step integrator.")
        
        operatorTemplateClass = NonConstantIPOperatorTemplate
      else:
        raise ParserException(operatorElement, "The 'constant' attribute must be either 'yes' or 'no'.")
      
      parserMethod = self.parseIPOperatorElement
    elif kindString == 'ex':
      if not constantString:
        # default to constant="no" because it uses less memory, and so is typically slightly faster.
        constantString = "no"
      
      parserMethod = self.parseEXOperatorElement
      if constantString == 'yes':
        operatorTemplateClass = ConstantEXOperatorTemplate
      elif constantString == 'no':
        operatorTemplateClass = NonConstantEXOperatorTemplate
      else:
        raise ParserException(operatorElement, "The constant attribute must be either 'yes' or 'no'.")
    elif kindString == 'cross_propagation':
      parserMethod = self.parseCrossPropagationOperatorElement
      operatorTemplateClass = CrossPropagationOperatorTemplate
    elif kindString == 'functions':
      parserMethod = None
      operatorTemplateClass = FunctionsOperatorTemplate
    else:
      raise ParserException(operatorElement, "Unknown operator kind '%(kindString)s'\n"
                                             "Valid options are: 'ip', 'ex', 'functions' or 'cross-propagation'." % locals())
    
    operatorTemplate = operatorTemplateClass(parent = operatorContainer,
                                             xmlElement = operatorElement,
                                             **self.argumentsToTemplateConstructors)
    
    operatorDefinitionCodeBlock = _UserLoopCodeBlock(field = operatorTemplate.field, xmlElement = operatorElement,
                                                     parent = operatorTemplate, **self.argumentsToTemplateConstructors)
    operatorDefinitionCodeBlock.dependenciesEntity = self.parseDependencies(operatorElement, optional=True)
    
    operatorTemplate.codeBlocks['operatorDefinition'] = operatorDefinitionCodeBlock
    
    if parserMethod:
      parserMethod(operatorTemplate, operatorElement)
    
    return operatorTemplate
  
  def parseIPOperatorElement(self, operatorTemplate, operatorElement):
    operatorDefinitionCodeBlock = operatorTemplate.primaryCodeBlock
    
    if operatorElement.hasAttribute('dimensions'):
      dimensionsString = operatorElement.getAttribute('dimensions').strip()
      dimensionNames = Utilities.symbolsInString(dimensionsString, xmlElement = operatorElement)
      
      for dimensionName in dimensionNames:
        if not operatorTemplate.field.hasDimensionName(dimensionName):
          raise ParserException(operatorElement, "Cannot list dimension '%(dimensionName)s' as a dimension as the integration vectors don't have this dimension." % locals())
      field = FieldElementTemplate.sortedFieldWithDimensionNames(dimensionNames, xmlElement = operatorElement)
      operatorTemplate.field = field
      operatorTemplate.primaryCodeBlock.field = field
      
    
    basis = None
    if operatorElement.hasAttribute('basis'):
      basis = operatorTemplate.field.basisFromString(operatorElement.getAttribute('basis'), xmlElement = operatorElement)
    else:
      basis = operatorTemplate.field.defaultSpectralBasis
    
    operatorDefinitionCodeBlock.basis = basis
    
    operatorNamesElement = operatorElement.getChildElementByTagName('operator_names')
    operatorNames = Utilities.symbolsInString(operatorNamesElement.innerText(), xmlElement = operatorNamesElement)
    
    if not operatorNames:
      raise ParserException(operatorNamesElement, "operator_names must not be empty.")
    
    for operatorName in operatorNames:
      if operatorName in self.globalNameSpace['symbolNames']:
        raise ParserException(operatorNamesElement,
                "Operator name '%(operatorName)s' conflicts with previously-defined symbol." % locals())
      
    operatorTemplate.operatorNames = operatorNames
    
    vectorName = operatorTemplate.id + "_field"
    
    typeString = 'complex'
    if operatorElement.hasAttribute('type'):
      typeString = operatorElement.getAttribute('type').strip().lower()
      if not typeString in ['real', 'imaginary', 'complex']:
        raise ParserException(operatorElement, "Unknown IP operator type '%(typeString)s'.\n"
                                               "The 'type' attribute must be 'real', 'imaginary' or 'complex'." % locals())
      if typeString == 'imaginary':
        typeString = 'complex'
        operatorTemplate.expFunction = 'cis'
        operatorTemplate.valueSuffix = '.Im()'
    
    operatorVectorTemplate = VectorElementTemplate(
      name = vectorName, field = operatorTemplate.field,
      parent = operatorTemplate, initialBasis = operatorTemplate.operatorBasis,
      type = typeString,
      **self.argumentsToTemplateConstructors
    )
    
    operatorVectorTemplate.needsInitialisation = False
    
    operatorDefinitionCodeBlock.targetVector = operatorVectorTemplate
    
    operatorContainer = operatorTemplate.parent
    integratorTemplate = operatorContainer.parent
    
    operatorVectorTemplate.nComponents = len(integratorTemplate.ipPropagationStepFractions) * len(operatorNames)
    operatorTemplate.operatorVector = operatorVectorTemplate
    
    return operatorTemplate
  
  def parseEXOperatorElement(self, operatorTemplate, operatorElement):
    operatorDefinitionCodeBlock = operatorTemplate.primaryCodeBlock
    
    if operatorElement.hasAttribute('basis'):
      operatorDefinitionCodeBlock.basis = \
        operatorTemplate.field.basisFromString(operatorElement.getAttribute('basis'), xmlElement = operatorElement)
    else:
      operatorDefinitionCodeBlock.basis = operatorTemplate.field.defaultSpectralBasis
    
    operatorNamesElement = operatorElement.getChildElementByTagName('operator_names')
    
    operatorNames = Utilities.symbolsInString(operatorNamesElement.innerText(), xmlElement = operatorNamesElement)
    
    if not operatorNames:
      raise ParserException(operatorNamesElement, "operator_names must not be empty.")
    
    resultVectorComponentPrefix = "_" + operatorTemplate.id
    resultVectorComponents = []
    
    for operatorName in operatorNames:
      if operatorName in self.globalNameSpace['symbolNames']:
        raise ParserException(operatorNamesElement,
                "Operator name '%(operatorName)s' conflicts with previously-defined symbol." % locals())
      # I'm not sure that we should be protecting the operator names in an EX or IP operator (except within
      # an operators element)
      
      # self.globalNameSpace['symbolNames'].add(operatorName)
    
    operatorTemplate.operatorNames = operatorNames
    
    if isinstance(operatorTemplate, ConstantEXOperatorTemplate):
      vectorName = operatorTemplate.id + "_field"
      
      operatorVectorTemplate = VectorElementTemplate(
        name = vectorName, field = operatorTemplate.field,
        parent = operatorTemplate, initialBasis = operatorTemplate.operatorBasis,
        type = 'real',
        **self.argumentsToTemplateConstructors
      )
      
      operatorVectorTemplate.needsInitialisation = False
      operatorVectorTemplate.components = operatorNames[:]
      operatorTemplate.operatorVector = operatorVectorTemplate
      
      operatorDefinitionCodeBlock.targetVector = operatorVectorTemplate
    
    vectorName = operatorTemplate.id + "_result"
    resultVector = VectorElementTemplate(
      name = vectorName, field = operatorTemplate.field,
      parent = operatorTemplate, initialBasis = operatorTemplate.field.defaultCoordinateBasis,
      type = 'real',
      **self.argumentsToTemplateConstructors
    )
    
    resultVector.needsInitialisation = False
    resultVector.components = resultVectorComponents
    operatorTemplate.resultVector = resultVector
    resultVector.basesNeeded.add(resultVector.field.basisForBasis(operatorTemplate.operatorBasis))
    
    if isinstance(operatorTemplate, NonConstantEXOperatorTemplate):
      operatorDefinitionCodeBlock.targetVector = resultVector
    
    return operatorTemplate
  
  
  def parseCrossPropagationOperatorElement(self, operatorTemplate, operatorElement):
    operatorDefinitionCodeBlock = operatorTemplate.primaryCodeBlock
    
    operatorDefinitionCodeBlock.basis = operatorDefinitionCodeBlock.field.defaultCoordinateBasis
    
    if not operatorElement.hasAttribute('algorithm'):
      raise ParserException(operatorElement, "Missing 'algorithm' attribute.")
    
    algorithmString = operatorElement.getAttribute('algorithm').strip()
    
    crossIntegratorClass = None
    crossStepperClass = None
    algorithmSpecificOptionsDict = {}
    
    integrator = operatorTemplate.parent.parent
    if algorithmString != 'SI' and isinstance(integrator, Integrators.FixedStepWithCross.FixedStepWithCross):
      raise ParserException(operatorElement, "The SIC integrator can only be used with SI cross-propagators.  Please change the algorithm of this cross-propagator to 'SI'.")      
    
    if algorithmString == 'RK4':
      crossIntegratorClass = Integrators.FixedStep.FixedStep
      crossStepperClass = Integrators.RK4Stepper.RK4Stepper
    elif algorithmString == 'SI':
      crossIntegratorClass = Integrators.FixedStep.FixedStep
      crossStepperClass = Integrators.SIStepper.SIStepper
      if operatorElement.hasAttribute('iterations'):
        algorithmSpecificOptionsDict['iterations'] = RegularExpressionStrings.integerInString(operatorElement.getAttribute('iterations'))
        if algorithmSpecificOptionsDict['iterations'] < 1:
          raise ParserException(operatorElement, "Iterations element must be 1 or greater (default 3).")
      
    else:
      raise ParserException(operatorElement, "Unknown cross-propagation algorithm '%(algorithmString)s'.\n"
                                             "The options are 'SI' or 'RK4'." % locals())
    
    crossIntegratorTemplate = crossIntegratorClass(stepperClass = crossStepperClass,
                                                   xmlElement = operatorElement,
                                                   parent = operatorTemplate,
                                                   **self.argumentsToTemplateConstructors)
    crossIntegratorTemplate.cross = True
    crossIntegratorTemplate.homeBasis = operatorDefinitionCodeBlock.basis
    
    self.applyAttributeDictionaryToObject(algorithmSpecificOptionsDict, crossIntegratorTemplate)
    
    if not operatorElement.hasAttribute('propagation_dimension'):
      raise ParserException(operatorElement, "Missing 'propagation_dimension' attribute.")
    
    propagationDimensionName = operatorElement.getAttribute('propagation_dimension').strip()
    fullField = operatorTemplate.field
    if not fullField.hasDimensionName(propagationDimensionName):
      fullFieldName = fullField.name
      raise ParserException(operatorElement, "The '%(propagationDimensionName)s' dimension must be a dimension of the\n"
                                             "'%(fullFieldName)s' field in order to cross-propagate along this dimension."
                                             % locals())
    
    operatorTemplate.propagationDimension = propagationDimensionName
    
    propagationDimension = fullField.dimensionWithName(propagationDimensionName)
    
    propDimRep = propagationDimension.representations[0]
    
    if not propDimRep.type == 'real' or not isinstance(propDimRep, UniformDimensionRepresentation):
      raise ParserException(operatorElement, "Cannot integrate in the '%(propagationDimensionName)s' direction as it is not a uniformly spaced 'real' dimension.\n"
                                             "Cross-propagators can only integrate along dimensions with transforms 'dft', 'dct', 'dst', or 'none'." % locals())
    
    fieldPropagationDimensionIndex = fullField.indexOfDimension(propagationDimension)
    # Set the stepCount -- this is the lattice for this dimension minus 1 because we know the value at the starting boundary
    crossIntegratorTemplate.stepCount = ''.join(['(', propDimRep.globalLattice, ' - 1)'])
    
    boundaryConditionElement = operatorElement.getChildElementByTagName('boundary_condition')
    
    if not boundaryConditionElement.hasAttribute('kind'):
      raise ParserException(boundaryConditionElement, "The 'boundary_condition' tag must have a kind='left' or kind='right' attribute.")
    
    kindString = boundaryConditionElement.getAttribute('kind').strip().lower()
    
    if kindString == 'left':
      operatorTemplate.propagationDirection = '+'
    elif kindString == 'right':
      operatorTemplate.propagationDirection = '-'
    else:
      raise ParserException(boundaryConditionElement, "Unknown boundary condition kind '%(kindString)s'. Options are 'left' or 'right'." % locals())
    
    # Set the step
    crossIntegratorTemplate.step = operatorTemplate.propagationDirection + propDimRep.stepSize
    
    integrationVectorsElement = operatorElement.getChildElementByTagName('integration_vectors')
    integrationVectorNames = Utilities.symbolsInString(integrationVectorsElement.innerText(), xmlElement = integrationVectorsElement)
    operatorTemplate.integrationVectorsEntity = ParsedEntity(integrationVectorsElement, integrationVectorNames)
    
    # We need to construct the field element for the reduced dimensions
    reducedField = operatorTemplate.reducedDimensionFieldForField(fullField)
    operatorTemplate.reducedField = reducedField
    
    operatorContainer = OperatorContainerTemplate(field = reducedField,
                                                  parent = crossIntegratorTemplate,
                                                  **self.argumentsToTemplateConstructors)
    crossIntegratorTemplate.intraStepOperatorContainers.append(operatorContainer)
    
    boundaryConditionCodeBlock = _UserLoopCodeBlock(
      field = reducedField, xmlElement = boundaryConditionElement,
      parent = operatorTemplate, basis = operatorDefinitionCodeBlock.basis,
      **self.argumentsToTemplateConstructors)
    boundaryConditionCodeBlock.dependenciesEntity = self.parseDependencies(boundaryConditionElement, optional=True)
    
    operatorTemplate.codeBlocks['boundaryCondition'] = boundaryConditionCodeBlock
    
    
    # Now we can construct the delta a operator for the cross-propagation integrator
    # When we parse our operator elements (if we have any), the delta a operator will also be constructed
    self.parseOperatorElements(operatorElement, operatorContainer, crossIntegratorTemplate)
    
    operatorTemplate.crossPropagationIntegrator = crossIntegratorTemplate
    operatorContainer.deltaAOperator.codeBlocks['operatorDefinition'].basis = operatorDefinitionCodeBlock.basis
    operatorTemplate.crossPropagationIntegratorDeltaAOperator = operatorContainer.deltaAOperator
  
  
  def parseOutputElement(self, simulationElement):
    outputElement = simulationElement.getChildElementByTagName('output')
    
    outputFeature = Features.Output.Output(parent = self.simulation, xmlElement = outputElement,
                                           **self.argumentsToTemplateConstructors)
    
    formatName = 'hdf5'
    
    if outputElement.hasAttribute('format'):
      formatName = outputElement.getAttribute('format').strip().lower()
    
    outputFormatClass = Features.OutputFormat.OutputFormat.outputFormatClasses.get(formatName)
    if not outputFormatClass:
      validFormats = ', '.join(["'%s'" % formatType for formatType in list(Features.OutputFormat.OutputFormat.outputFormatClasses.keys())])
      raise ParserException(outputElement, "Breakpoint format attribute '%(formatName)s' unknown.\n"
                                           "The valid formats are %(validFormats)s." % locals())
    
    if not outputElement.hasAttribute('filename'):
      filename = self.globalNameSpace['simulationName']
    elif not outputElement.getAttribute('filename').strip():
      raise ParserException(outputElement, "Filename attribute is empty.")
    else:
      filename = outputElement.getAttribute('filename').strip()
    
    if filename.lower().endswith('.xsil'):
      index = filename.lower().rindex('.xsil')
      filename = filename[0:index]
    
    outputFormat = outputFormatClass(parent = outputFeature, xmlElement = outputElement,
                                     **self.argumentsToTemplateConstructors)
    outputFeature.filename = filename
    outputFeature._children.append(outputFormat)
    outputFeature.outputFormat = outputFormat
    
    geometryTemplate = self.globalNameSpace['geometry']
    
    geometryDimRepNameMap = {}
    for dim in geometryTemplate.transverseDimensions: # Skip the propagation dimension
        for dimRep in dim.representations:
            geometryDimRepNameMap[dimRep.name] = dim
    
    
    momentGroupElements = outputElement.getChildElementsByTagNames(['group', 'sampling_group'], optional=True)
    for momentGroupNumber, momentGroupElement in enumerate(momentGroupElements):
      samplingElement = momentGroupElement if momentGroupElement.tagName == 'sampling_group' else momentGroupElement.getChildElementByTagName('sampling')
      
      momentGroupTemplate = MomentGroupTemplate(number = momentGroupNumber, xmlElement = momentGroupElement,
                                                parent = self.simulation,
                                                **self.argumentsToTemplateConstructors)
      
      samplingFieldTemplate = FieldElementTemplate(name = momentGroupTemplate.name + "_sampling", parent = self.simulation,
                                                   **self.argumentsToTemplateConstructors)
      momentGroupTemplate.samplingField = samplingFieldTemplate
      
      outputFieldTemplate = FieldElementTemplate(name = momentGroupTemplate.name + "_output", parent = self.simulation,
                                                 **self.argumentsToTemplateConstructors)
      momentGroupTemplate.outputField = outputFieldTemplate
      
      momentGroupTemplate.computedVectors.update(self.parseComputedVectorElements(samplingElement, momentGroupTemplate))
      
      sampleCount = 0
      
      if samplingElement.hasAttribute('initial_sample'):
        if samplingElement.getAttribute('initial_sample').strip().lower() == 'yes':
          momentGroupTemplate.requiresInitialSample = True
          sampleCount = 1
      
      transformMultiplexer = self.globalNameSpace['features']['TransformMultiplexer']
      samplingDimension = Dimension(name = self.globalNameSpace['globalPropagationDimension'],
                                    transverse = False,
                                    transform = transformMultiplexer.transformWithName('none'),
                                    parent = momentGroupTemplate.outputField,
                                    **self.argumentsToTemplateConstructors)
      
      propagationDimRep = NonUniformDimensionRepresentation(name = self.globalNameSpace['globalPropagationDimension'],
                                                            type = 'real',
                                                            runtimeLattice = sampleCount,
                                                            parent = samplingDimension,
                                                            **self.argumentsToTemplateConstructors)
      samplingDimension.addRepresentation(propagationDimRep)
      
      momentGroupTemplate.outputField.dimensions = [samplingDimension]
      
      basisString = samplingElement.getAttribute('basis') if samplingElement.hasAttribute('basis') else ''
      basisStringComponents = basisString.split()
      dimensionsNeedingLatticeUpdates = {}
      sampleBasis = []
      singlePointSamplingBasis = []
      
      for component in basisStringComponents:
        # Each component of the basis string is to be of the form 'dimRepName(numberOfPoints)'
        # where dimRepName is a name of a dimension in a basis,
        #       numberOfPoints is a non-negative integer,
        # and where the '(numberOfPoints)' part is optional.  If not provided, 
        # it defaults to sampling all points in that dimension.
        
        if '(' in component:
          dimRepName, latticeString = component.split('(')
        else:
          dimRepName, latticeString = component, ''
        sampleBasis.append(dimRepName)
        latticeString = latticeString.strip(')')
        if not dimRepName in geometryDimRepNameMap:
            raise ParserException(samplingElement,
                      "'%(dimRepName)s' is not recognised as a valid basis specifier." % locals())
        geometryDimension = geometryDimRepNameMap[dimRepName]
        dimRep = [rep for rep in geometryDimension.representations if rep.name == dimRepName][0]
        lattice = dimRep.runtimeLattice # Default
        if latticeString:
          try:
            lattice = int(latticeString)
          except ValueError as err:
            raise ParserException(samplingElement,
                        "Unable to interpret '%(latticeString)s' as an integer." % locals())
        
        if not isinstance(lattice, basestring):
          if not lattice >= 0:
            raise ParserException(samplingElement,
                      "Lattice size '%(latticeString)s' must be positive." % locals())
        
        # Now we check that the number of sample points is not larger than the 
        # number of points in the geometry lattice. Also check that the number of sample
        # points divide the geometry lattice (if sampling in coord space) or is smaller
        # than the total number of points (spectral or auxillary space).
        # There is an additional complication if run-time validation has been selected, and
        # the number of lattice points is a variable to be passed in at run time, rather than
        # a number given at the script parse-time.
        # If this is the case, set up the checks (e.g. sample points must be less than
        # total lattice points etc) to be done at run-time rather than here.

        # Check to see if run-time validation has been selected
        runTimeValidationSelected = False
        if 'Validation' in self.globalNameSpace['features']:
          if self.globalNameSpace['features']['Validation'].runValidationChecks == True:
            runTimeValidationSelected = True

        geometryLattice = dimRep.runtimeLattice

        if isinstance(geometryLattice, basestring):
          if runTimeValidationSelected == False:
            # Theoretically this code won't execute, since the only way geometryLattice
            # can be a run-time variable at this point is if run-time validation is
            # on. Still, make the check in case something is screwed up.
            raise ParserException(samplingElement, 
                    "Sampling: Geometry lattice not a number, and run-time validation is off! \n"
                    "This shouldn't happen. Please report this to xmds-devel@lists.sourceforge.net.\n")
          else:
            # Run-time validation is on, so we need to set up some run-time checks
            # to make sure the geometry lattice size given at run-time is sensible for
            # sampling that has been specified.
            validationFeature = self.globalNameSpace['features']['Validation']
            validationFeature.validationChecks.append("""
              if (%(lattice)s > %(geometryLattice)s)
                _LOG(_ERROR_LOG_LEVEL, "ERROR: Can't sample more points in dimension '%(dimRepName)s' than\\n"
                                       "there are points in the full dimension.\\n"
                                       "%%i > %%i.\\n", (int)%(lattice)s, (int)%(geometryLattice)s);""" % locals())
            
            # Coordinate space: the number of sample points must divide the number of geometry points
            if issubclass(dimRep.tag, dimRep.tagForName('coordinate')):
              validationFeature.validationChecks.append("""
                if ( (%(lattice)s > 0) && (%(geometryLattice)s %% %(lattice)s !=0) )
                  _LOG(_ERROR_LOG_LEVEL, "ERROR: The number of sampling lattice points (%%i) must divide the number\\n"
                                       "of lattice points on the simulation grid (%%i).\\n", (int)%(lattice)s, (int)%(geometryLattice)s);\n""" % locals())

        else:
          # the geometry lattice is a number, not a run-time variable, so we can do the 
          # following checks now 
          if lattice > geometryLattice:
            raise ParserException(samplingElement,
                        "Can't sample more points in dimension '%(dimRepName)s' than there are points in the full dimension.\n"
                        "%(lattice)i > %(geometryLattice)i." % locals())
          if issubclass(dimRep.tag, dimRep.tagForName('coordinate')):
            # Coordinate space: the number of sample points must divide the number of geometry points
            if lattice > 0 and not (geometryLattice % lattice) == 0:
              raise ParserException(samplingElement,
                        "The number of sampling lattice points (%(lattice)i) must divide the number "
                        "of lattice points on the simulation grid (%(geometryLattice)i)." % locals())
            # For spectral / auxiliary space, the number of lattice points just needs to be smaller than
            # the total number of points, something we have already checked.
        
        # This code sets up the sampling for various dimensions. There are three
        # cases: lattice>1, lattice=1, and lattice=0, where lattice is the number
        # of points to sample on the full geometry lattice.
        # If lattice>1 and lattice<geometry lattice, we're subsampling.
        # We have to note that in the case where the geometry lattice is specified
        # at runtime (so it's a string, not a number), if no number was explicitly
        # given for the sampling lattice, then it inherits the string as a value
        # from the geometry lattice. In this case, we don't need to subsample, but
        # we should be aware that lattice can be a string.
        if isinstance(lattice, basestring) or lattice > 1:
          outputFieldDimension = geometryDimension.copy(parent = outputFieldTemplate)
          if geometryLattice != lattice:
             # Yes, we are subsampling
             dimensionsNeedingLatticeUpdates[outputFieldDimension.name] = lattice
          samplingFieldTemplate.dimensions.append(outputFieldDimension.copy(parent = samplingFieldTemplate))
          outputFieldTemplate.dimensions.append(outputFieldDimension)
        elif lattice == 1:
          # In this case, we don't want the dimension in either the moment group, or the sampling field.
          # But we do want it in the sampling basis, we have to add it at the end
          singlePointSamplingBasis.append(dimRepName)
        elif lattice == 0:
          # In this case, the dimension only belongs to the sampling field because we are integrating over it.
          # Note that we previously set the lattice of the dimension to be the same as the number
          # of points in this dimension according to the geometry element.
          samplingFieldTemplate.dimensions.append(geometryDimension.copy(parent = samplingFieldTemplate))
          
      
      samplingFieldTemplate.sortDimensions()
      outputFieldTemplate.sortDimensions()
      
      driver = self.globalNameSpace['features']['Driver']
      
      sampleBasis = samplingFieldTemplate.basisForBasis(driver.canonicalBasisForBasis(tuple(sampleBasis)))
      outputBasis = momentGroupTemplate.outputField.basisForBasis(
        (propagationDimRep.canonicalName,) + sampleBasis
      )
      momentGroupTemplate.singlePointSamplingBasis = driver.canonicalBasisForBasis(tuple(singlePointSamplingBasis))
      
      if formatName == 'hdf5':
        # HDF5 doesn't like writing out data when the order of dimensions in the file and
        # in memory aren't the same. It's slow. So we make sure that we sample in the same
        # order that we would write out to file. But only for HDF5 as this requires extra
        # MPI Transpose operations at each sample.
        sampleBasis = driver.canonicalBasisForBasis(sampleBasis, noTranspose = True)
        outputBasis = driver.canonicalBasisForBasis(outputBasis, noTranspose = True)
      
      
      for dimName, lattice in list(dimensionsNeedingLatticeUpdates.items()):
        for field, basis in [(samplingFieldTemplate, sampleBasis), (outputFieldTemplate, outputBasis)]:
          field.dimensionWithName(dimName).setReducedLatticeInBasis(lattice, basis)
      
      # end looping over dimension elements.  
      momentGroupTemplate.outputBasis = outputBasis
      
      rawVectorTemplate = VectorElementTemplate(
        name = 'raw', field = momentGroupTemplate.outputField,
        initialBasis = momentGroupTemplate.outputBasis, type = 'real',
        **self.argumentsToTemplateConstructors
      )
      momentGroupTemplate.rawVector = rawVectorTemplate
      
      momentsElement = samplingElement.getChildElementByTagName('moments')
      momentNames = Utilities.symbolsInString(momentsElement.innerText(), xmlElement = momentsElement)
      
      if not momentNames:
        raise ParserException(momentsElement, "Moments element should be a list of moment names")
      
      for momentName in momentNames:
        if momentName in self.globalNameSpace['symbolNames']:
          raise ParserException(momentsElement, 
                  "'%(momentName)s' cannot be used as a moment name because it clashes with "
                  "a previously-defined variable." % locals())
        
        ## We don't add the momentName to the symbol list because they can be used by other moment groups safely
        rawVectorTemplate.components.append(momentName)
      
      samplingCodeBlock = _UserLoopCodeBlock(
        field = samplingFieldTemplate, xmlElement = samplingElement,
        parent = momentGroupTemplate, basis = sampleBasis,
        **self.argumentsToTemplateConstructors)
      samplingCodeBlock.dependenciesEntity = self.parseDependencies(samplingElement)
      if samplingCodeBlock.dependenciesEntity.xmlElement.hasAttribute("basis"):
          parserWarning(samplingCodeBlock.dependenciesEntity.xmlElement, "'basis' attribute is ignored on the <dependencies> tag in a sampling block. "
                        "Instead specify the basis on the <sampling_group> tag itself.")
      # The raw vector will be needed during looping
      samplingCodeBlock.targetVector = rawVectorTemplate
      momentGroupTemplate.codeBlocks['sampling'] = samplingCodeBlock
      
      if not samplingCodeBlock.codeString:
        raise ParserException(samplingElement, "The CDATA section for the sampling code must not be empty.")
      
      operatorContainer = self.parseFilterElements(samplingElement, parent=momentGroupTemplate, optional=True)
      if operatorContainer:
        momentGroupTemplate.operatorContainers.append(operatorContainer)
      
      operatorElements = samplingElement.getChildElementsByTagName('operator', optional=True)
      if operatorElements:
        operatorContainer = OperatorContainerTemplate(field = samplingFieldTemplate,
                                                      # Point the proxies for the shared code etc at
                                                      # the moment group object's sampling code, the sampling space, etc.
                                                      sharedCodeBlockKeyPath = 'parent.codeBlocks.sampling',
                                                      parent = momentGroupTemplate,
                                                      **self.argumentsToTemplateConstructors)
        
        momentGroupTemplate.operatorContainers.append(operatorContainer)
        for operatorElement in operatorElements:
          kindString = operatorElement.getAttribute('kind').strip().lower()
          if not kindString in ('functions', 'ex'):
            raise ParserException(operatorElement, "Unrecognised operator kind '%(kindString)s'. "
                                                   "The only valid operator kinds in sampling elements are 'functions' and 'ex'." % locals())
          
          if kindString == 'ex':
            # We can't handle constant=yes in this case, so we'll just replace it with the value we can support
            operatorElement.setAttribute('constant', 'no')
          operatorTemplate = self.parseOperatorElement(operatorElement, operatorContainer)
          if isinstance(operatorTemplate, ConstantEXOperatorTemplate):
            raise ParserException(operatorElement, "You cannot have a constant EX operator in moment group sampling. Try constant=\"no\".")
      
      
      
      # We have now dealt with the sampling element, and now need to deal with the processing element.
      # TODO: Implement processing element.
      processingElement = momentGroupElement.getChildElementByTagName('post_processing', optional=True)
      
      processedVectorTemplate = VectorElementTemplate(
        name = 'processed', field = outputFieldTemplate, initialBasis = momentGroupTemplate.outputBasis,
        type = 'real',
        **self.argumentsToTemplateConstructors
      )
      momentGroupTemplate.processedVector = processedVectorTemplate
      
      if not processingElement:
        momentGroupTemplate.hasPostProcessing = False
        processedVectorTemplate.components = rawVectorTemplate.components[:]
        rawVectorTemplate.type = 'real'
      else:
        momentGroupTemplate.hasPostProcessing = True