File: RbGS_expected.xsil

package info (click to toggle)
xmds2 3.1.0%2Bdfsg2-10
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 42,580 kB
  • sloc: python: 64,048; cpp: 4,868; ansic: 1,463; makefile: 144; sh: 54; javascript: 8
file content (369 lines) | stat: -rw-r--r-- 12,377 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
  <testing>
    <command_line>mpirun -n 4 ./RbGS</command_line>
    <xsil_file name="RbGS.xsil" expected="RbGS_expected.xsil" absolute_tolerance="1e-4" relative_tolerance="1e-4" />
    <xsil_file name="potential.xsil" expected="potential_expected.xsil" absolute_tolerance="1e-4" relative_tolerance="1e-4" />
    <xsil_file name="RbGSa.xsil" expected="RbGSa_expected.xsil" absolute_tolerance="1e-4" relative_tolerance="1e-4" />
  </testing>

  <name>RbGS</name>
  <author>Robin Stevenson</author>
  <description>
    Three dimensional harmonic trap Ground state calculation. cigar trap.
  </description>
  
  <features>
    <halt_non_finite />
    <auto_vectorise />
    <benchmark />
    <bing />
    <!-- <openmp /> -->
    <fftw plan="measure" />
    <!-- <diagnostics /> -->
	<globals>
		<![CDATA[
		/*constants*/
			const double hbar = 1.054e-34;
			const double massRb = 1.44316e-25;
			const double c0OnHbar = 5.16891e-51/hbar; 		//for Rb-87
			const double c2OnHbar = -2.38868e-53/hbar;         

      const double cd = 2.1501769e-54;  // =mu0 * muB^2 *Gf^2 / 4pi --> this is for rubidium 
      const double cdOnHbar = 2.1501769e-54/hbar;  // =mu0 * muB^2 *Gf^2 / 4pi --> this is for rubidium 
      const double gamma1 = 4.39943e10;
	
			const double Sqrt2 = pow(2.0, 0.5); 			
			const double a3dSqrt2 = 3.0/pow(2.0, 0.5); 
			const double Pi = 3.141592654;   

      /*experimental variables*/
			const double ratio = 1.0/40.0;
			const double omegap = 2*3.141592654*3000;
			const double N0 = 1.0e5;                  //Note this change
			const double B = 73.0e-7;        
			const double gamma1B = gamma1*B;
			const double muOnHbar = 0.0*24411.0;
		]]>
    </globals>  
  </features>

  <driver name="distributed-mpi" />  



  <geometry>
    <propagation_dimension>t</propagation_dimension>
    <transverse_dimensions>
      <dimension name="x" lattice="32"  domain="(-2.2e-6, 2.2e-6)" />
      <dimension name="y" lattice="32"  domain="(-2.2e-6, 2.2e-6)" />
      <dimension name="z" lattice="32"  domain="(-90.0e-6, 90.0e-6)" />
    </transverse_dimensions>
  </geometry>

  
  <vector name="wavefunction" initial_basis="x y z" type="complex">
    <components>
      phi1 phi0 phim1
    </components>

    <initialisation>
      <![CDATA[	    
      phi1 = (x<1.0e-6 ? (y<1.0e-6 ? (z<40.0e-6 ? 1.0 : 0.0) : 0.0) : 0.0 );
      phi0 = 0.0;
      phim1 = 0.0;
      ]]>
    </initialisation>
  </vector>
  
  <vector name="potential" type="double">
    <components>
      VtrapOnHbar
    </components>
    <initialisation>
      <![CDATA[
   			//VtrapOnHbar = 0.5* massRb * omegap*omegap*(x*x + y*y + z*z*ratio*ratio);
   			VtrapOnHbar = x*x+y*y+z*z*ratio*ratio < 2.0*2.0e-12 ? 0.5 * massRb * omegap * omegap *  (x*x+y*y+z*z*ratio*ratio)/hbar-muOnHbar : 0.5 * massRb * omegap * omegap *  2.0*2.0e-12/hbar-muOnHbar;
      ]]>
    </initialisation>
  </vector>

  
  <computed_vector name="spins" type="complex">
    <components>
      Sz Splus Sminus S0
    </components>
	  <evaluation>
	  <dependencies>
	    wavefunction
	  </dependencies>
      <![CDATA[
			S0 = mod2(phi1) + mod2(phi0) + mod2(phim1);
			Splus = conj(phi1)*phi0 + conj(phi0)*phim1;
			Sminus = conj(phi0)*phi1 + conj(phim1)*phi0;
			//Sx = Sqrt2*(phi1.re * phi0.re - phi1.im * phi0.im + phi0.re * phim1.re - phi0.im * phim1.im);
			//Sy = Sqrt2*(phim1.im * phi0.re - phim1.re * phi0.im - phi0.re * phi1.im + phi0.im * phi1.re);
			Sz = mod2(phi1)- mod2(phim1);
			// Splus = Sx + i*Sy;
			// Sminus = conj(Splus);
      ]]>		
    </evaluation>
  </computed_vector>  

  <computed_vector type="complex" name="bilinear" dimensions="x y z">
    <components>b11 bm1m1 b10 b01 bm10 b0m1</components>
    <evaluation>
      <dependencies fourier_space="x y z">wavefunction</dependencies>
        <![CDATA[
          b11 = mod2(phi1);
          bm1m1 = mod2(phim1);
          b10 = conj(phi1)*phi0;
          b01 = conj(phi0)*phi1;
          bm10 = conj(phim1)*phi0;
          b0m1 = conj(phi0)*phim1;
        ]]>
    </evaluation>
  </computed_vector>
 
 
  <vector name="DipoleTerms" type="complex" initial_basis="kx ky kz">
    <components>DA DB DC DCstar DE DEstar</components>
    <initialisation>
      <![CDATA[
        double Ksqd = kx*kx + ky*ky + kz*kz;
        DA = Ksqd<1.0      ?     0.0*i     :     -4*Pi/3 * (1 - 3 * kz*kz /Ksqd) + 0.0*i;
        DB = Ksqd<1.0      ?     0.0*i     :     2*Pi/3 * (1 - 3 * kz*kz /Ksqd) + 0.0*i;
        DC = Ksqd<1.0      ?     0.0*i     :    2* 2*Pi/3 * (kx - i * ky)*kz/Ksqd;
        DCstar = Ksqd<1.0      ?     0.0*i     :  2*   2*Pi/3 * (kx + i * ky)*kz/Ksqd;
        DE = Ksqd < 1.0      ?     0.0*i     :     -4*Pi/3 * (kx - i*ky)*(kx - i*ky) / Ksqd;
        DEstar = Ksqd < 1.0      ?     0.0*i     :     -4*Pi/3 * (kx + i*ky)*(kx + i*ky) / Ksqd;
      ]]>
    </initialisation>
  </vector>


  <computed_vector name="dipoles" type="complex" dimensions="x y z">
    <components>Dz Dplus Dminus</components>
    <evaluation>
      <dependencies fourier_space="kx ky kz">DipoleTerms bilinear</dependencies>
      <![CDATA[
        Dz = DA*(b11 - bm1m1) - a3dSqrt2 * DC*(b10 + b0m1) - a3dSqrt2 * DCstar*(bm10 + b01);
        Dplus = DB*(b10 + b0m1) -1.5 * DEstar*(b01 + bm10) - a3dSqrt2 * DCstar*(b11 - bm1m1);
        Dminus = DB*(b01 + bm10) -1.5 * DE*(b10 + b0m1) - a3dSqrt2 * DC*(b11 - bm1m1);        
      ]]>
    </evaluation>
  </computed_vector>


  
  <computed_vector name="normalisation" dimensions="" type="double">
    <components>
      Ncalc
    </components>
    <evaluation>
    <dependencies fourier_space="x y z">wavefunction</dependencies>
      <![CDATA[
        // Calculate the current normalisation of the wave function.
        Ncalc = mod2(phi1) + mod2(phi0) + mod2(phim1);
      ]]>
    </evaluation>
  </computed_vector>
 
  <sequence>
    <breakpoint filename="potential.xsil">
      <dependencies>
        potential
      </dependencies>
    </breakpoint>
    <integrate algorithm="RK4" interval="15.0e-7" steps="5">
      <samples>1 1 1 1</samples>
      <filters>
        <filter>
          <dependencies>wavefunction normalisation</dependencies>
          <![CDATA[
            // Correct normalisation of the wavefunction
            phi1 *= sqrt(N0/Ncalc);
            phi0 *= sqrt(N0/Ncalc);
            phim1 *= sqrt(N0/Ncalc);
          ]]>
        </filter>
      </filters>
      <operators>
        <operator kind="ip" constant="yes">
          <operator_names>T</operator_names>
          <![CDATA[
			      T   = -0.5*hbar*(kx*kx+ky*ky+kz*kz)/massRb;
          ]]>
        </operator>
        <dependencies>potential spins dipoles</dependencies>
        <integration_vectors>wavefunction</integration_vectors>
        <![CDATA[
          dphi1_dt = T[phi1] + ((-VtrapOnHbar)*phi1 -c0OnHbar*S0*phi1 -c2OnHbar*(Sz*phi1 + Sminus*phi0) +gamma1B*phi1 -cdOnHbar*(phi1*Dz + phi0*Dminus));
          
          dphi0_dt = T[phi0] + ((-VtrapOnHbar)*phi0 -c0OnHbar*S0*phi0 -c2OnHbar*(Splus*phi1 + Sminus*phim1) -cdOnHbar*(phi1*Dplus + phim1*Dminus));
          
          dphim1_dt = T[phim1] + ((-VtrapOnHbar)*phim1 -c0OnHbar*S0*phim1 -c2OnHbar*(-Sz*phim1 + Splus*phi0) -gamma1B*phim1 -cdOnHbar*(-phim1*Dz + phi0*Dplus));
        ]]>
      </operators>
    </integrate>
    
        <filter>
          <dependencies>wavefunction normalisation</dependencies>
          <![CDATA[
            // Correct normalisation of the wavefunction
            phi1 *= sqrt(N0/Ncalc);
            phi0 *= sqrt(N0/Ncalc);
            phim1 *= sqrt(N0/Ncalc);
          ]]>
        </filter>


    <breakpoint filename="potential.xsil">
      <dependencies>
        potential
      </dependencies>
    </breakpoint>
    <breakpoint filename="RbGSa.xsil">
      <dependencies>
        wavefunction
      </dependencies>
    </breakpoint>
  </sequence>
  
  <output format="binary">
      <sampling_group initial_sample="no">
        <dimension name="x" lattice="16" fourier_space="no" />
        <dimension name="y" lattice="16" fourier_space="no" />
        <dimension name="z" fourier_space="no" />
        <moments>phi1re dens0 densm1 phi1im dens1</moments>
        <dependencies>wavefunction</dependencies>
        <![CDATA[
          dens1 = mod2(phi1);
          densm1 = mod2(phim1);
          phi1re = real(phi1);
          dens0 = mod2(phi0);
          phi1im = imag(phi1);
        ]]>
      </sampling_group>


    
      <sampling_group initial_sample="no">
        <dimension name="x" lattice="16" fourier_space="yes" />
        <dimension name="y" lattice="16" fourier_space="yes" />
        <dimension name="z" fourier_space="yes" />
        <moments>dens1</moments>
        <dependencies>wavefunction</dependencies>
        <![CDATA[
          dens1 = mod2(phi1);
        ]]>
      </sampling_group>
 
      <sampling_group initial_sample="yes">
        <dimension name="x" lattice="0" fourier_space="no" />
        <dimension name="y" lattice="0" fourier_space="no" />
        <dimension name="z" lattice="0" fourier_space="no" />
        <moments>N1 N0 Nm1</moments>
        <dependencies>wavefunction</dependencies>
        <![CDATA[
          N1 = mod2(phi1);
          N0 = mod2(phi0);
          Nm1 = mod2(phim1);
        ]]>
      </sampling_group>
      <sampling_group initial_sample="no">
        <dimension name="x" lattice="0" fourier_space="no" />
        <dimension name="y" lattice="0" fourier_space="no" />
        <dimension name="z" lattice="0" fourier_space="no" />
        <moments>E1OnHbarRe E1OnHbarIm</moments>
        <operator kind="ex" constant="no">
          <operator_names>T2</operator_names>
          <![CDATA[
			      T2   = -0.5*hbar*(kx*kx+ky*ky+kz*kz)/massRb;
          ]]>
        </operator>       
        <dependencies>wavefunction potential spins dipoles</dependencies>
        <![CDATA[
          E1OnHbarRe =  real(conj(phi1)*(T2[phi1] + (-VtrapOnHbar)*phi1 -c0OnHbar*S0*phi1 -c2OnHbar*(Sz*phi1 + Sminus*phi0) +gamma1B*phi1 -cdOnHbar*(phi1*Dz + phi0*Dminus)));
          E1OnHbarIm =  imag(conj(phi1)*(T2[phi1] + (-VtrapOnHbar)*phi1 -c0OnHbar*S0*phi1 -c2OnHbar*(Sz*phi1 + Sminus*phi0) +gamma1B*phi1 -cdOnHbar*(phi1*Dz + phi0*Dminus)));
        ]]>
      </sampling_group>
  </output>


<info>
Script compiled with xpdeint version VERSION_PLACEHOLDER (SUBVERSION_REVISION_PLACEHOLDER)
See http://www.xmds.org for more information.
</info>

<XSIL Name="moment_group_1">
  <Param Name="n_independent">3</Param>
  <Array Name="variables" Type="Text">
    <Dim>8</Dim>
    <Stream><Metalink Format="Text" Delimiter=" \n"/>
x y z phi1re dens0 densm1 phi1im dens1 
    </Stream>
  </Array>
  <Array Name="data" Type="double">
    <Dim>16</Dim>
    <Dim>16</Dim>
    <Dim>32</Dim>
    <Dim>8</Dim>
    <Stream><Metalink Format="Binary" UnsignedLong="uint32" precision="double" Type="Remote" Encoding="LittleEndian"/>
RbGS_expected_mg0.dat
    </Stream>
  </Array>
</XSIL>

<XSIL Name="moment_group_2">
  <Param Name="n_independent">3</Param>
  <Array Name="variables" Type="Text">
    <Dim>4</Dim>
    <Stream><Metalink Format="Text" Delimiter=" \n"/>
kx ky kz dens1 
    </Stream>
  </Array>
  <Array Name="data" Type="double">
    <Dim>16</Dim>
    <Dim>16</Dim>
    <Dim>32</Dim>
    <Dim>4</Dim>
    <Stream><Metalink Format="Binary" UnsignedLong="uint32" precision="double" Type="Remote" Encoding="LittleEndian"/>
RbGS_expected_mg1.dat
    </Stream>
  </Array>
</XSIL>

<XSIL Name="moment_group_3">
  <Param Name="n_independent">1</Param>
  <Array Name="variables" Type="Text">
    <Dim>4</Dim>
    <Stream><Metalink Format="Text" Delimiter=" \n"/>
t N1 N0 Nm1 
    </Stream>
  </Array>
  <Array Name="data" Type="double">
    <Dim>2</Dim>
    <Dim>4</Dim>
    <Stream><Metalink Format="Binary" UnsignedLong="uint32" precision="double" Type="Remote" Encoding="LittleEndian"/>
RbGS_expected_mg2.dat
    </Stream>
  </Array>
</XSIL>

<XSIL Name="moment_group_4">
  <Param Name="n_independent">0</Param>
  <Array Name="variables" Type="Text">
    <Dim>2</Dim>
    <Stream><Metalink Format="Text" Delimiter=" \n"/>
E1OnHbarRe E1OnHbarIm 
    </Stream>
  </Array>
  <Array Name="data" Type="double">
    <Dim>2</Dim>
    <Stream><Metalink Format="Binary" UnsignedLong="uint32" precision="double" Type="Remote" Encoding="LittleEndian"/>
RbGS_expected_mg3.dat
    </Stream>
  </Array>
</XSIL>
</simulation>