File: bessel_cosine_evolution.xmds

package info (click to toggle)
xmds2 3.1.0%2Bdfsg2-10
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 42,580 kB
  • sloc: python: 64,048; cpp: 4,868; ansic: 1,463; makefile: 144; sh: 54; javascript: 8
file content (102 lines) | stat: -rw-r--r-- 3,358 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
  <testing>
    <input_xsil_file name="bessel_cosine_groundstate_breakpoint_expected.xsil" />
    <xsil_file name="bessel_cosine_evolution.xsil" expected="bessel_cosine_evolution_expected.xsil" absolute_tolerance="1e10" relative_tolerance="8e-5" />
  </testing>
  
  <name>bessel_cosine_evolution</name>
  <author>Graham Dennis</author>
  <description>
    Evolve the 3D ground state of a Rubidium BEC in a harmonic magnetic trap assuming
    cylindrical symmetry about the z axis and reflection symmetry about z=0.
    This permits us to use the cylindrical bessel functions to expand the solution transverse
    to z and a cosine series to expand the solution along z.
    
    This testcase tests using both Fourier transforms and Matrix transforms in a single simulation.
    
  </description>
  
  <features>
    <auto_vectorise />
    <benchmark />
    <bing />
    <globals>
      <![CDATA[
        const real omegaz = 2*M_PI*20;
        const real omegarho = 2*M_PI*200;
        const real hbar = 1.05457148e-34;
        const real M = 1.409539200000000e-25;
        const real g = 9.8;
        const real scatteringLength = 5.57e-9;
        const real Uint = 4.0*M_PI*hbar*hbar*scatteringLength/M;
        const complex miUint_hbar = -i*Uint/hbar;
        const real Nparticles = 5.0e5;

        /* offset constants */
        const real EnergyOffset = pow(15.0*Nparticles*Uint*omegaz*omegarho*omegarho/(8*M_PI), 2.0/5.0)
                                    * pow(M/2.0, 3.0/5.0);

      ]]>
    </globals>
  </features>
  
  <geometry>
    <propagation_dimension> t </propagation_dimension>
    <transverse_dimensions>
      <dimension name="z" lattice="32"  domain="(0.0, 1.0e-4)" transform="dct" volume_prefactor="2.0" />
      <dimension name="r" lattice="32"  domain="(0.0, 1.0e-5)" transform="bessel" volume_prefactor="2.0*M_PI"/>
    </transverse_dimensions>
  </geometry>
  
  <vector name="potential" type="complex">
    <components>
      V1
    </components>
    <initialisation>
      <![CDATA[
        real Vtrap = 0.5*M*(omegarho*omegarho*r*r + omegaz*omegaz*z*z);
      
        V1  = -i/hbar*(Vtrap - EnergyOffset);
      
      ]]>
    </initialisation>
  </vector>
  
  <vector name="wavefunction" type="complex">
    <components>
      phi
    </components>
    <initialisation kind="hdf5">
      <filename>bessel_cosine_groundstate_breakpoint_expected.h5</filename>
    </initialisation>
  </vector>
  
  <sequence>
    <integrate algorithm="ARK45" tolerance="1e-6" interval="1e-3">
      <samples>10</samples>
      <operators>
        <operator kind="ip" constant="yes" type="imaginary">
          <operator_names>T</operator_names>
          <![CDATA[
            T = -i*0.5*hbar/M*(kr*kr + kz*kz);
          ]]>
        </operator>
        <integration_vectors>wavefunction</integration_vectors>
        <dependencies>potential</dependencies>
        <![CDATA[
          dphi_dt = T[phi] + (V1 + miUint_hbar*mod2(phi))*phi;
        ]]>
      </operators>
    </integrate>
  </sequence>
  <output format="hdf5">
      <sampling_group basis="r z" initial_sample="no">
        <moments>dens</moments>
        <dependencies>wavefunction</dependencies>
        <![CDATA[
          dens = mod2(phi);
        ]]>
      </sampling_group>
  </output>
</simulation>