File: vibstring_circle_spectral.xmds

package info (click to toggle)
xmds2 3.1.0%2Bdfsg2-10
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 42,580 kB
  • sloc: python: 64,048; cpp: 4,868; ansic: 1,463; makefile: 144; sh: 54; javascript: 8
file content (130 lines) | stat: -rw-r--r-- 3,674 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
  <testing>
    <xsil_file name="vibstring_circle_spectral.xsil" expected="vibstring_circle_spectral_expected.xsil" absolute_tolerance="1e-5" relative_tolerance="1e-5" />
  </testing>
  <name>vibstring_circle_spectral</name>
  <author>Graham Dennis</author>
  <description>
    Vibrating string with Dirichlet boundary conditions on a circle.
    
    Modification of vibstring_circle to calculate temporal derivatives in fourier (spectral) space.
    This runs faster than vibstring_circle on the same grid.
  </description>
  
  <features>
    <benchmark />
    <!-- <error_check /> -->
    <chunked_output size="10KB" />
    <bing />
    <fftw plan="patient" />
    <globals>
      <![CDATA[
      const real T = 10.0;
      const real mass = 1e-3;
      const real length = 1.0;
      const real mu = mass/length;
      const real T_mu = T/mu;
      
      const real width = 0.1;
      const real absorb = 80.0;
      ]]>
    </globals>
  </features>
  
  <geometry>
    <propagation_dimension> t </propagation_dimension>
    <transverse_dimensions>
      <dimension name="x" lattice="64"  domain="(-1, 1)" />
      <dimension name="y" lattice="64"  domain="(-1, 1)" />
    </transverse_dimensions>
  </geometry>
  
  <vector name="main" initial_basis="x y" type="complex">
    <components>
      u uDot
    </components>
    <initialisation>
      <![CDATA[
        u = exp(-100.0*((x-0.5)*(x-0.5) + y*y));
        uDot = 0.0;
      ]]>
    </initialisation>
  </vector>
  
  <vector name="boundary" initial_basis="x y" type="real">
    <components>
      bc
    </components>
    <initialisation>
      <![CDATA[
        real r = sqrt(x*x + y*y);
        real rright = _max_x-width;
        real rdamping = r > rright ? absorb*(1-cos(M_PI*(r - rright)/width)) : 0.0;

        bc = exp(-rdamping);
        if (r > _max_x)
          bc = 0.0;
        if ( r > rright)
          bc = 0.0;
        else
          bc = 1.0;
          
        
      ]]>
    </initialisation>
  </vector>
  
  <sequence>
    <integrate algorithm="ARK89" tolerance="1e-7" interval="4e-2" steps="1000" home_space="k">
      <samples>5 5 100</samples>
      <operators>
        <operator kind="ex" constant="yes" basis="x y">
          <operator_names>L</operator_names>
          <![CDATA[
          real r2 = x*x + y*y;
          if (r2 > (_max_x - width)*(_max_x-width))
            L = 0.0;
          else
            L = 1.0;
          ]]>
        </operator>
        <integration_vectors basis="kx ky">main</integration_vectors>
        <![CDATA[
          du_dt = uDot;
          duDot_dt = L[-T_mu*(kx*kx+ky*ky)*u];
        ]]>
      </operators>
    </integrate>
  </sequence>
  <output format="binary">
      <sampling_group basis="x(32) y(32)" initial_sample="yes">
        <moments>amp</moments>
        <dependencies>main</dependencies>
        <![CDATA[
          amp = u.Re();
        ]]>
      </sampling_group>
      <sampling_group basis="kx(32) ky(32)" initial_sample="yes">
        <moments>amp</moments>
        <dependencies>main</dependencies>
        <![CDATA[
          amp = u.Re();
        ]]>
      </sampling_group>
      <sampling_group basis="x(0) y(0)" initial_sample="yes">
        <moments>energy</moments>
        <dependencies>main</dependencies>
        <operator kind="ex" constant="no">
          <operator_names>Lx Ly</operator_names>
          <![CDATA[
            Lx = i*kx;
            Ly = i*ky;
          ]]>
        </operator>
        <![CDATA[
          energy = mod2(uDot) + T_mu*mod2(Lx[u]) + T_mu*mod2(Ly[u]);
        ]]>
      </sampling_group>
  </output>
</simulation>