1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
<testing>
<xsil_file name="vibstring_circle_spectral.xsil" expected="vibstring_circle_spectral_expected.xsil" absolute_tolerance="1e-5" relative_tolerance="1e-5" />
</testing>
<name>vibstring_circle_spectral</name>
<author>Graham Dennis</author>
<description>
Vibrating string with Dirichlet boundary conditions on a circle.
Modification of vibstring_circle to calculate temporal derivatives in fourier (spectral) space.
This runs faster than vibstring_circle on the same grid.
</description>
<features>
<benchmark />
<!-- <error_check /> -->
<chunked_output size="10KB" />
<bing />
<fftw plan="patient" />
<globals>
<![CDATA[
const real T = 10.0;
const real mass = 1e-3;
const real length = 1.0;
const real mu = mass/length;
const real T_mu = T/mu;
const real width = 0.1;
const real absorb = 80.0;
]]>
</globals>
</features>
<geometry>
<propagation_dimension> t </propagation_dimension>
<transverse_dimensions>
<dimension name="x" lattice="64" domain="(-1, 1)" />
<dimension name="y" lattice="64" domain="(-1, 1)" />
</transverse_dimensions>
</geometry>
<vector name="main" initial_basis="x y" type="complex">
<components>
u uDot
</components>
<initialisation>
<![CDATA[
u = exp(-100.0*((x-0.5)*(x-0.5) + y*y));
uDot = 0.0;
]]>
</initialisation>
</vector>
<vector name="boundary" initial_basis="x y" type="real">
<components>
bc
</components>
<initialisation>
<![CDATA[
real r = sqrt(x*x + y*y);
real rright = _max_x-width;
real rdamping = r > rright ? absorb*(1-cos(M_PI*(r - rright)/width)) : 0.0;
bc = exp(-rdamping);
if (r > _max_x)
bc = 0.0;
if ( r > rright)
bc = 0.0;
else
bc = 1.0;
]]>
</initialisation>
</vector>
<sequence>
<integrate algorithm="ARK89" tolerance="1e-7" interval="4e-2" steps="1000" home_space="k">
<samples>5 5 100</samples>
<operators>
<operator kind="ex" constant="yes" basis="x y">
<operator_names>L</operator_names>
<![CDATA[
real r2 = x*x + y*y;
if (r2 > (_max_x - width)*(_max_x-width))
L = 0.0;
else
L = 1.0;
]]>
</operator>
<integration_vectors basis="kx ky">main</integration_vectors>
<![CDATA[
du_dt = uDot;
duDot_dt = L[-T_mu*(kx*kx+ky*ky)*u];
]]>
</operators>
</integrate>
</sequence>
<output format="binary">
<sampling_group basis="x(32) y(32)" initial_sample="yes">
<moments>amp</moments>
<dependencies>main</dependencies>
<![CDATA[
amp = u.Re();
]]>
</sampling_group>
<sampling_group basis="kx(32) ky(32)" initial_sample="yes">
<moments>amp</moments>
<dependencies>main</dependencies>
<![CDATA[
amp = u.Re();
]]>
</sampling_group>
<sampling_group basis="x(0) y(0)" initial_sample="yes">
<moments>energy</moments>
<dependencies>main</dependencies>
<operator kind="ex" constant="no">
<operator_names>Lx Ly</operator_names>
<![CDATA[
Lx = i*kx;
Ly = i*ky;
]]>
</operator>
<![CDATA[
energy = mod2(uDot) + T_mu*mod2(Lx[u]) + T_mu*mod2(Ly[u]);
]]>
</sampling_group>
</output>
</simulation>
|