File: vibstring_circle_spectral_expected.xsil

package info (click to toggle)
xmds2 3.1.0%2Bdfsg2-10
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 42,580 kB
  • sloc: python: 64,048; cpp: 4,868; ansic: 1,463; makefile: 144; sh: 54; javascript: 8
file content (209 lines) | stat: -rw-r--r-- 6,907 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
  <testing>
    <xsil_file name="vibstring_circle_spectral.xsil" expected="vibstring_circle_spectral_expected.xsil" absolute_tolerance="1e-5" relative_tolerance="1e-5" />
  </testing>
  <name>vibstring_circle_spectral</name>
  <author>Graham Dennis</author>
  <description>
    Vibrating string with Dirichlet boundary conditions on a circle.
    
    Modification of vibstring_circle to calculate temporal derivatives in fourier (spectral) space.
    This runs faster than vibstring_circle on the same grid.
  </description>
  
  <features>
    <benchmark />
    <!-- <error_check /> -->
    <bing />
    <fftw plan="patient" />
    <openmp />
    <globals>
      <![CDATA[
      const double T = 10.0;
      const double mass = 1e-3;
      const double length = 1.0;
      const double mu = mass/length;
      const double T_mu = T/mu;
      
      const double xmax = _xy_max_x;
      const double width = 0.1;
      const double absorb = 80.0;
      ]]>
    </globals>
  </features>
  
  <geometry>
    <propagation_dimension> t </propagation_dimension>
    <transverse_dimensions>
      <dimension name="x" lattice="64"  domain="(-1, 1)" />
      <dimension name="y" lattice="64"  domain="(-1, 1)" />
    </transverse_dimensions>
  </geometry>
  
  <vector name="main" initial_basis="x y" type="complex">
    <components>
      u uDot
    </components>
    <initialisation>
      <![CDATA[
        u = exp(-100.0*((x-0.5)*(x-0.5) + y*y));
        uDot = 0.0;
      ]]>
    </initialisation>
  </vector>
  
  <vector name="boundary" initial_basis="x y" type="double">
    <components>
      bc
    </components>
    <initialisation>
      <![CDATA[
        double r = sqrt(x*x + y*y);
        double rright = xmax-width;
        double rdamping = r > rright ? absorb*(1-cos(M_PI*(r - rright)/width)) : 0.0;

        bc = exp(-rdamping);
        if (r > xmax)
          bc = 0.0;
        if ( r > rright)
          bc = 0.0;
        else
          bc = 1.0;
          
        
      ]]>
    </initialisation>
  </vector>
  
  <sequence>
    <integrate algorithm="ARK89" tolerance="1e-7" interval="4e-2" steps="1000" home_space="k">
      <samples>5 5 100</samples>
      <operators>
        <operator kind="ex" constant="yes" fourier_space="x y">
          <operator_names>L</operator_names>
          <![CDATA[
          double r2 = x*x + y*y;
          if (r2 > (_max_x - width)*(_max_x-width))
            L = 0.0;
          else
            L = 1.0;
          ]]>
        </operator>
        <integration_vectors fourier_space="kx ky">main</integration_vectors>
        <![CDATA[
          du_dt = uDot;
          duDot_dt = L[-T_mu*(kx*kx+ky*ky)*u];
        ]]>
      </operators>
    </integrate>
  </sequence>
  <output format="binary">
      <sampling_group initial_sample="yes">
        <!-- Any dimension not mentioned is assumed to be in real space and its middle element will be sampled -->
        <!-- Note that this is different default behaviour to the filter operator. To integrate, put in a dimension -->
        <!-- with zero lattice points. -->
        <!-- Note that dimensions can be in any order. Not that I can think of a reason why you would want to do that -->
        <dimension name="x" lattice="32" fourier_space="no" />
        <dimension name="y" lattice="32" fourier_space="no" />
        <moments>amp</moments>
        <dependencies>main</dependencies>
        <![CDATA[
          amp = u;
        ]]>
      </sampling_group>
      <sampling_group initial_sample="yes">
        <!-- Any dimension not mentioned is assumed to be in real space and its middle element will be sampled -->
        <!-- Note that this is different default behaviour to the filter operator. To integrate, put in a dimension -->
        <!-- with zero lattice points. -->
        <!-- Note that dimensions can be in any order. Not that I can think of a reason why you would want to do that -->
        <dimension name="x" lattice="32" fourier_space="yes" />
        <dimension name="y" lattice="32" fourier_space="yes" />
        <moments>amp</moments>
        <dependencies>main</dependencies>
        <![CDATA[
          amp = u;
        ]]>
      </sampling_group>
      <sampling_group initial_sample="yes">
        <!-- Any dimension not mentioned is assumed to be in real space and its middle element will be sampled -->
        <!-- Note that this is different default behaviour to the filter operator. To integrate, put in a dimension -->
        <!-- with zero lattice points. -->
        <!-- Note that dimensions can be in any order. Not that I can think of a reason why you would want to do that -->
        <dimension name="x" lattice="0" fourier_space="no" />
        <dimension name="y" lattice="0" fourier_space="no" />
        <moments>energy</moments>
        <dependencies>main</dependencies>
        <operator kind="ex" constant="no">
          <operator_names>Lx Ly</operator_names>
          <![CDATA[
            Lx = i*kx;
            Ly = i*ky;
          ]]>
        </operator>
        <![CDATA[
          energy = mod2(uDot) + T_mu*mod2(Lx[u]) + T_mu*mod2(Ly[u]);
        ]]>
      </sampling_group>
  </output>

<info>
Script compiled with xpdeint version VERSION_PLACEHOLDER (SUBVERSION_REVISION_PLACEHOLDER)
See http://www.xmds.org for more information.
</info>

<XSIL Name="moment_group_1">
  <Param Name="n_independent">3</Param>
  <Array Name="variables" Type="Text">
    <Dim>4</Dim>
    <Stream><Metalink Format="Text" Delimiter=" \n"/>
t x y amp 
    </Stream>
  </Array>
  <Array Name="data" Type="double">
    <Dim>6</Dim>
    <Dim>32</Dim>
    <Dim>32</Dim>
    <Dim>4</Dim>
    <Stream><Metalink Format="Binary" UnsignedLong="uint32" precision="double" Type="Remote" Encoding="LittleEndian"/>
vibstring_circle_spectral_expected_mg0.dat
    </Stream>
  </Array>
</XSIL>

<XSIL Name="moment_group_2">
  <Param Name="n_independent">3</Param>
  <Array Name="variables" Type="Text">
    <Dim>4</Dim>
    <Stream><Metalink Format="Text" Delimiter=" \n"/>
t kx ky amp 
    </Stream>
  </Array>
  <Array Name="data" Type="double">
    <Dim>6</Dim>
    <Dim>32</Dim>
    <Dim>32</Dim>
    <Dim>4</Dim>
    <Stream><Metalink Format="Binary" UnsignedLong="uint32" precision="double" Type="Remote" Encoding="LittleEndian"/>
vibstring_circle_spectral_expected_mg1.dat
    </Stream>
  </Array>
</XSIL>

<XSIL Name="moment_group_3">
  <Param Name="n_independent">1</Param>
  <Array Name="variables" Type="Text">
    <Dim>2</Dim>
    <Stream><Metalink Format="Text" Delimiter=" \n"/>
t energy 
    </Stream>
  </Array>
  <Array Name="data" Type="double">
    <Dim>101</Dim>
    <Dim>2</Dim>
    <Stream><Metalink Format="Binary" UnsignedLong="uint32" precision="double" Type="Remote" Encoding="LittleEndian"/>
vibstring_circle_spectral_expected_mg2.dat
    </Stream>
  </Array>
</XSIL>
</simulation>