1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
<testing>
<xsil_file name="vibstring_circle_spectral.xsil" expected="vibstring_circle_spectral_expected.xsil" absolute_tolerance="1e-5" relative_tolerance="1e-5" />
</testing>
<name>vibstring_circle_spectral</name>
<author>Graham Dennis</author>
<description>
Vibrating string with Dirichlet boundary conditions on a circle.
Modification of vibstring_circle to calculate temporal derivatives in fourier (spectral) space.
This runs faster than vibstring_circle on the same grid.
</description>
<features>
<benchmark />
<!-- <error_check /> -->
<bing />
<fftw plan="patient" />
<openmp />
<globals>
<![CDATA[
const double T = 10.0;
const double mass = 1e-3;
const double length = 1.0;
const double mu = mass/length;
const double T_mu = T/mu;
const double xmax = _xy_max_x;
const double width = 0.1;
const double absorb = 80.0;
]]>
</globals>
</features>
<geometry>
<propagation_dimension> t </propagation_dimension>
<transverse_dimensions>
<dimension name="x" lattice="64" domain="(-1, 1)" />
<dimension name="y" lattice="64" domain="(-1, 1)" />
</transverse_dimensions>
</geometry>
<vector name="main" initial_basis="x y" type="complex">
<components>
u uDot
</components>
<initialisation>
<![CDATA[
u = exp(-100.0*((x-0.5)*(x-0.5) + y*y));
uDot = 0.0;
]]>
</initialisation>
</vector>
<vector name="boundary" initial_basis="x y" type="double">
<components>
bc
</components>
<initialisation>
<![CDATA[
double r = sqrt(x*x + y*y);
double rright = xmax-width;
double rdamping = r > rright ? absorb*(1-cos(M_PI*(r - rright)/width)) : 0.0;
bc = exp(-rdamping);
if (r > xmax)
bc = 0.0;
if ( r > rright)
bc = 0.0;
else
bc = 1.0;
]]>
</initialisation>
</vector>
<sequence>
<integrate algorithm="ARK89" tolerance="1e-7" interval="4e-2" steps="1000" home_space="k">
<samples>5 5 100</samples>
<operators>
<operator kind="ex" constant="yes" fourier_space="x y">
<operator_names>L</operator_names>
<![CDATA[
double r2 = x*x + y*y;
if (r2 > (_max_x - width)*(_max_x-width))
L = 0.0;
else
L = 1.0;
]]>
</operator>
<integration_vectors fourier_space="kx ky">main</integration_vectors>
<![CDATA[
du_dt = uDot;
duDot_dt = L[-T_mu*(kx*kx+ky*ky)*u];
]]>
</operators>
</integrate>
</sequence>
<output format="binary">
<sampling_group initial_sample="yes">
<!-- Any dimension not mentioned is assumed to be in real space and its middle element will be sampled -->
<!-- Note that this is different default behaviour to the filter operator. To integrate, put in a dimension -->
<!-- with zero lattice points. -->
<!-- Note that dimensions can be in any order. Not that I can think of a reason why you would want to do that -->
<dimension name="x" lattice="32" fourier_space="no" />
<dimension name="y" lattice="32" fourier_space="no" />
<moments>amp</moments>
<dependencies>main</dependencies>
<![CDATA[
amp = u;
]]>
</sampling_group>
<sampling_group initial_sample="yes">
<!-- Any dimension not mentioned is assumed to be in real space and its middle element will be sampled -->
<!-- Note that this is different default behaviour to the filter operator. To integrate, put in a dimension -->
<!-- with zero lattice points. -->
<!-- Note that dimensions can be in any order. Not that I can think of a reason why you would want to do that -->
<dimension name="x" lattice="32" fourier_space="yes" />
<dimension name="y" lattice="32" fourier_space="yes" />
<moments>amp</moments>
<dependencies>main</dependencies>
<![CDATA[
amp = u;
]]>
</sampling_group>
<sampling_group initial_sample="yes">
<!-- Any dimension not mentioned is assumed to be in real space and its middle element will be sampled -->
<!-- Note that this is different default behaviour to the filter operator. To integrate, put in a dimension -->
<!-- with zero lattice points. -->
<!-- Note that dimensions can be in any order. Not that I can think of a reason why you would want to do that -->
<dimension name="x" lattice="0" fourier_space="no" />
<dimension name="y" lattice="0" fourier_space="no" />
<moments>energy</moments>
<dependencies>main</dependencies>
<operator kind="ex" constant="no">
<operator_names>Lx Ly</operator_names>
<![CDATA[
Lx = i*kx;
Ly = i*ky;
]]>
</operator>
<![CDATA[
energy = mod2(uDot) + T_mu*mod2(Lx[u]) + T_mu*mod2(Ly[u]);
]]>
</sampling_group>
</output>
<info>
Script compiled with xpdeint version VERSION_PLACEHOLDER (SUBVERSION_REVISION_PLACEHOLDER)
See http://www.xmds.org for more information.
</info>
<XSIL Name="moment_group_1">
<Param Name="n_independent">3</Param>
<Array Name="variables" Type="Text">
<Dim>4</Dim>
<Stream><Metalink Format="Text" Delimiter=" \n"/>
t x y amp
</Stream>
</Array>
<Array Name="data" Type="double">
<Dim>6</Dim>
<Dim>32</Dim>
<Dim>32</Dim>
<Dim>4</Dim>
<Stream><Metalink Format="Binary" UnsignedLong="uint32" precision="double" Type="Remote" Encoding="LittleEndian"/>
vibstring_circle_spectral_expected_mg0.dat
</Stream>
</Array>
</XSIL>
<XSIL Name="moment_group_2">
<Param Name="n_independent">3</Param>
<Array Name="variables" Type="Text">
<Dim>4</Dim>
<Stream><Metalink Format="Text" Delimiter=" \n"/>
t kx ky amp
</Stream>
</Array>
<Array Name="data" Type="double">
<Dim>6</Dim>
<Dim>32</Dim>
<Dim>32</Dim>
<Dim>4</Dim>
<Stream><Metalink Format="Binary" UnsignedLong="uint32" precision="double" Type="Remote" Encoding="LittleEndian"/>
vibstring_circle_spectral_expected_mg1.dat
</Stream>
</Array>
</XSIL>
<XSIL Name="moment_group_3">
<Param Name="n_independent">1</Param>
<Array Name="variables" Type="Text">
<Dim>2</Dim>
<Stream><Metalink Format="Text" Delimiter=" \n"/>
t energy
</Stream>
</Array>
<Array Name="data" Type="double">
<Dim>101</Dim>
<Dim>2</Dim>
<Stream><Metalink Format="Binary" UnsignedLong="uint32" precision="double" Type="Remote" Encoding="LittleEndian"/>
vibstring_circle_spectral_expected_mg2.dat
</Stream>
</Array>
</XSIL>
</simulation>
|