1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
<testing>
<xsil_file name="bessel_cosine_groundstate.xsil" expected="../fast/bessel_cosine_groundstate_expected.xsil" absolute_tolerance="1e-7" relative_tolerance="1e-5" />
<xsil_file name="bessel_cosine_groundstate_breakpoint.xsil" expected="../fast/bessel_cosine_groundstate_breakpoint_expected.xsil" absolute_tolerance="1e0" relative_tolerance="1e-5" />
</testing>
<name>bessel_cosine_groundstate</name>
<author>Graham Dennis</author>
<description>
Calculate the 3D ground state of a Rubidium BEC in a harmonic magnetic trap assuming
cylindrical symmetry about the z axis and reflection symmetry about z=0.
This permits us to use the cylindrical bessel functions to expand the solution transverse
to z and a cosine series to expand the solution along z.
This testcase tests using both Fourier transforms and Matrix transforms in a single simulation.
</description>
<features>
<auto_vectorise />
<benchmark />
<bing />
<openmp />
<fftw threads="4" />
<globals>
<![CDATA[
const real omegaz = 2*M_PI*20;
const real omegarho = 2*M_PI*200;
const real hbar = 1.05457148e-34;
const real M = 1.409539200000000e-25;
const real g = 9.8;
const real scatteringLength = 5.57e-9;
const real Uint = 4.0*M_PI*hbar*hbar*scatteringLength/M;
const real Nparticles = 5.0e5;
/* offset constants */
const real EnergyOffset = pow(15.0*Nparticles*Uint*omegaz*omegarho*omegarho/(8*M_PI), 2.0/5.0)
* pow(M/2.0, 3.0/5.0);
]]>
</globals>
</features>
<geometry>
<propagation_dimension> t </propagation_dimension>
<transverse_dimensions>
<dimension name="z" lattice="32" domain="(0.0, 1.0e-4)" transform="dct" volume_prefactor="2.0" />
<dimension name="r" lattice="32" domain="(0.0, 1.0e-5)" transform="bessel" volume_prefactor="2.0*M_PI"/>
</transverse_dimensions>
</geometry>
<vector name="potential" type="complex">
<components>
V1
</components>
<initialisation>
<![CDATA[
real Vtrap = 0.5*M*(omegarho*omegarho*r*r + omegaz*omegaz*z*z);
V1 = -i/hbar*(Vtrap - EnergyOffset);
]]>
</initialisation>
</vector>
<vector name="wavefunction" type="complex">
<components>
phi
</components>
<initialisation>
<![CDATA[
if ((abs(r) < 0.9e-5) && abs(z) < 0.9e-4) {
phi = 1.0; //sqrt(Nparticles/2.0e-5);
// This will be automatically normalised later
} else {
phi = 0.0;
}
]]>
</initialisation>
</vector>
<computed_vector name="normalisation" dimensions="" type="real">
<components>
Ncalc
</components>
<evaluation>
<dependencies>wavefunction</dependencies>
<![CDATA[
// Calculate the current normalisation of the wave function.
Ncalc = mod2(phi);
]]>
</evaluation>
</computed_vector>
<sequence>
<integrate algorithm="RK4" interval="1e-4" steps="1000">
<samples>100</samples>
<filters>
<filter>
<dependencies>wavefunction normalisation</dependencies>
<![CDATA[
// Correct normalisation of the wavefunction
phi *= sqrt(Nparticles/Ncalc);
]]>
</filter>
</filters>
<operators>
<operator kind="ip" constant="yes">
<operator_names>T</operator_names>
<![CDATA[
T = -0.5*hbar/M*(kr*kr + kz*kz);
]]>
</operator>
<integration_vectors>wavefunction</integration_vectors>
<dependencies>potential</dependencies>
<![CDATA[
dphi_dt = T[phi] - (i*V1 + Uint/hbar*mod2(phi))*phi;
]]>
</operators>
</integrate>
<breakpoint filename="bessel_cosine_groundstate_breakpoint.xsil" format="hdf5">
<dependencies>wavefunction</dependencies>
</breakpoint>
</sequence>
<output format="binary">
<sampling_group basis="r z" initial_sample="no">
<moments>norm_dens</moments>
<dependencies>wavefunction normalisation</dependencies>
<![CDATA[
norm_dens = mod2(phi)/Ncalc;
]]>
</sampling_group>
</output>
</simulation>
|