1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
|
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
<testing>
<xsil_file name="cross_propagation.xsil" expected="cross_propagation_expected.xsil" absolute_tolerance="1e-7" relative_tolerance="1e-5" />
</testing>
<name>cross_propagation</name>
<author>Graham Dennis</author>
<description>
Sine cross-propagation validity tests.
The 'u' variable checks for errors caused by poorly interpolating
dependencies. The 'v' variable checks for errors just in the
cross-propagation algorithm. The 'w' variable checks for errors due
to IP cross-propagation (should be the smallest). The 'x' variable checks
for errors due to EX cross-propagation, they should be the same as 'v'.
You can choose the cross-propagation algorithm to be either 'SI' or 'RK4'.
</description>
<features>
<benchmark />
<bing />
</features>
<geometry>
<propagation_dimension> z </propagation_dimension>
<transverse_dimensions>
<dimension name="t" lattice="128" domain="(0, 10)" transform="none" />
</transverse_dimensions>
</geometry>
<vector name="main" type="complex">
<components>
foo
</components>
<initialisation>
<![CDATA[
foo = 0.0;
]]>
</initialisation>
</vector>
<vector name="constants" type="real">
<components>cosine</components>
<initialisation>
<![CDATA[
cosine = cos(t);
]]>
</initialisation>
</vector>
<vector name="zerodConstants" type="real">
<components>bar</components>
<initialisation>
<![CDATA[
bar = M_PI;
]]>
</initialisation>
</vector>
<vector name="cross" type="complex">
<components>u v w x</components>
<initialisation>
<![CDATA[
u = 0.0;
v = 0.0;
w = 0.0;
x = 0.0;
]]>
</initialisation>
</vector>
<sequence>
<integrate algorithm="RK9" interval="1" steps="2">
<samples>1</samples>
<operators>
<operator kind="cross_propagation" algorithm="SI" propagation_dimension="t">
<integration_vectors>cross</integration_vectors>
<dependencies>constants zerodConstants</dependencies>
<boundary_condition kind="left">
<![CDATA[
u = 0.0;
v = 1.0;
w = 1.0;
x = 1.0;
]]>
</boundary_condition>
<operator kind="ip" constant="yes">
<operator_names>L</operator_names>
<![CDATA[
L = i;
]]>
</operator>
<operator kind="ex" constant="yes">
<operator_names>M</operator_names>
<![CDATA[
M = i;
]]>
</operator>
<![CDATA[
du_dt = cosine;
dv_dt = i*v;
dw_dt = L[w]; // this one is pretty much exact
dx_dt = M[x];
]]>
</operator>
<integration_vectors>main</integration_vectors>
<![CDATA[
dfoo_dz = 0.0;
]]>
</operators>
</integrate>
</sequence>
<output format="binary">
<sampling_group basis="t" initial_sample="no">
<moments>error_u error_v error_w error_x</moments>
<dependencies>cross</dependencies>
<![CDATA[
error_u = abs(u - sin(t));
error_v = abs(v - polar(1.0, t));
error_w = abs(w - polar(1.0, t));
error_x = abs(x - polar(1.0, t));
]]>
</sampling_group>
</output>
</simulation>
|