1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
#!/usr/bin/env python3
# encoding: utf-8
"""
_MomentGroupElement.py
This contains all the pure-python code for MomentGroupElement.tmpl
Created by Graham Dennis on 2007-10-18.
Copyright (c) 2007-2012, Graham Dennis
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
from xpdeint.ScriptElement import ScriptElement
from xpdeint.ParserException import ParserException
from xpdeint.Function import Function
from xpdeint.Utilities import lazy_property
class _MomentGroupElement (ScriptElement):
def __init__(self, number, *args, **KWs):
self.number = number
self.name = 'mg' + str(self.number)
ScriptElement.__init__(self, *args, **KWs)
# Set default variables
self.requiresInitialSample = False
self.getVar('momentGroups').append(self)
self.computedVectors = set()
self.operatorContainers = []
sampleFunctionName = ''.join(['_', self.id, '_sample'])
sampleFunction = Function(name = sampleFunctionName,
args = [],
implementation = self.sampleFunctionContents)
self.functions['sample'] = sampleFunction
processFunctionName = ''.join(['_', self.id, '_process'])
processFunction = Function(name = processFunctionName,
args = [],
implementation = self.processFunctionContents)
self.functions['process'] = processFunction
writeOutFunctionName = ''.join(['_', self.id, '_write_out'])
writeOutFunction = Function(name = writeOutFunctionName,
args = [('FILE*', '_outfile')],
implementation = self.writeOutFunctionContents)
self.functions['writeOut'] = writeOutFunction
@property
def children(self):
children = super(_MomentGroupElement, self).children
children.extend(self.computedVectors)
children.extend(self.operatorContainers)
return children
@lazy_property
def propDimRep(self):
return self.outputField.dimensionWithName(self.propagationDimension).inBasis(self.outputBasis)
# Do we actually need to allocate the moment group vector?
# We may not need to allocate the raw vector if there is no
# processing of the raw vector to be done before it is written.
@lazy_property
def rawVectorNeedsToBeAllocated(self):
# If we have processing code, then we definitely need a raw vector
if self.hasattr('processingCode') and self.processingCode: return True
dict = {'returnValue': False, 'MomentGroup': self}
featureOrdering = ['Driver']
# This function allows the features to determine whether or not the raw vector
# needs to be allocated by changing the value of the 'returnValue' key in dict.
# The features should only change the value to true if they need the raw vector
# allocated. Otherwise, they shouldn't touch the value.
self.insertCodeForFeatures('rawVectorNeedsToBeAllocated', featureOrdering, dict)
return dict['returnValue']
def bindNamedVectors(self):
super(_MomentGroupElement, self).bindNamedVectors()
if not self.rawVectorNeedsToBeAllocated:
self.outputField.managedVectors.remove(self.processedVector)
self.processedVector.remove()
self.processedVector = self.rawVector
def addSamplePoints(self, samplePoints):
self.outputField.dimensionWithName(self.propagationDimension).inBasis(self.outputBasis).runtimeLattice += samplePoints
def preflight(self):
super(_MomentGroupElement, self).preflight()
for dependency in self.codeBlocks['sampling'].dependencies:
if self.hasPostProcessing and dependency.type == 'complex':
self.rawVector.type = 'complex'
# Throw out the propagation dimension if it only contains a single sample
if self.outputField.hasDimensionName(self.propagationDimension):
propDimRep = self.propDimRep
if propDimRep.runtimeLattice == 1:
self.propDimRep = None
singlePointDimension = self.outputField.dimensionWithName(self.propagationDimension)
self.outputField.dimensions.remove(singlePointDimension)
singlePointDimension.remove()
self.outputBasis = tuple(b for b in self.outputBasis if not b is propDimRep.canonicalName)
for vector in self.outputField.vectors:
basesNeeded = set(tuple(b for b in basis if not b is propDimRep.canonicalName) for basis in vector.basesNeeded)
vector.basesNeeded.clear()
vector.basesNeeded.update(basesNeeded)
vector.field._basisForBasisCache.clear()
vector.initialBasis = tuple(b for b in vector.initialBasis if not b is propDimRep.canonicalName)
geometry = self.getVar('geometry')
singlePointSamplingDims = [dim.name for dim in geometry.dimensions \
if any(dimRep.canonicalName in self.singlePointSamplingBasis for dimRep in dim.representations)]
loopingDimensionNames = set([dim.name for dim in self.samplingField.dimensions]).union(singlePointSamplingDims)
for dependency in self.codeBlocks['sampling'].dependencies:
missingLoopingDimensionNames = set(dim.name for dim in dependency.field.dimensions).difference(loopingDimensionNames)
if missingLoopingDimensionNames:
raise ParserException(self.codeBlocks['sampling'].xmlElement,
"The dimension(s) %s have not been included in the basis specification. "
"They are needed by the vector '%s'." % (', '.join(missingLoopingDimensionNames), dependency.name))
self.codeBlocks['sampling'].basis = (self.propagationDimension,) \
+ self.codeBlocks['sampling'].basis \
+ self.singlePointSamplingBasis
outputFieldID = self.outputField.id
propagationDimension = self.propagationDimension
self.codeBlocks['sampling'].loopArguments['indexOverrides'] = \
{propagationDimension: {self.outputField: "_%(outputFieldID)s_index_%(propagationDimension)s" % locals()}}
self.integratingComponents = bool(loopingDimensionNames.difference(set([dim.name for dim in self.outputField.dimensions])))
if self.integratingComponents:
# We are integrating over dimensions, and therefore the rawVector is an index override
self.codeBlocks['sampling'].loopArguments['vectorOverrides'] = [self.rawVector]
|