1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
|
<HTML>
<HEAD>
<TITLE>Xmgr: transformations</TITLE>
</HEAD>
<BODY>
<h2> <a NAME="transformations">Transformations</a> </h2>
<ul>
<li> <a href="#eval">Evaluate expression</a>
<li> <a href="#load">Load values</a>
<li> <a href="#leval">Load & evaluate</a>
<li> <a href="#histo">Histograms</a>
<li> <a href="#fourier">Fourier transforms</a>
<li> <a href="#running">Running averages</a>
<li> <a href="#regression">Regression</a>
<li> <a href="#nlcurve">Non-linear curve fitting</a>
<li> <a href="#diff">Differences</a>
<li> <a href="#seasdiff">Seasonal differences</a>
<li> <a href="#int">Integration</a>
<li> <a href="#xcorr">Cross/auto-correlation</a>
<li> <a href="#interp">Interpolation</a>
<li> <a href="#spline">Splines</a>
<li> <a href="#sample">Sample points</a>
<li> <a href="#prune">Prune data</a>
<li> <a href="#digitalfilter">Digital filter</a>
<li> <a href="#lconv">Linear convolution</a>
<li> <a href="#geom">Geometric transformations</a>
<li> <a href="#featext">Feature extraction</a>
</ul>
<p>
NOTE:
Some of these operations generate new sets, if you run out of sets use
Edit/Set operations (described below) to kill unneeded sets. Also, the
scaling of the world coordinate system may be inappropriate for the results
of many of these operations. Use the Status popup to determine the
appropriate scaling factors to use in "Define world" (above), or
use "Autoscale..." (in View/Autoscale above). Most functions operate on
active sets only.
<p>
<HR>
<h3> <a NAME="eval">Evaluate expressions</a> </h3>
<p>
Evaluates a formula defined in infix fashion.
<p>
Select the set on which the formula will operate, (set must be active, use
File/Status to find the current state of sets). If you desire the result be
loaded to a new set rather than overwriting the set used for computations,
use the panel cycle denoted `Result to' to inform xmgr you'd like the
result placed in a new set (if there is one). A new set is created only
if a single set is selected from step 1. If `All sets' are selected
then the results will overwrite all active sets.
<p>
Enter the formula, the syntax is:
<p>
(x,y,a,b,c,d)=<expression>
<p>
where (x,y,a,b,c,d) are defined as the x and y of the currently selected
set and a,b,c,d are scratch arrays that can be used to perform operations
between sets. Case is ignored, so X=COS(X) is correct.
<p>
Click on <b>Accept</b> when you are satisfied with everything.
<p>
Variables:
<ul>
<li> a == reference to scratch array
<li> b == reference to scratch array
<li> c == reference to scratch array
<li> d == reference to scratch array
</ul>
<p>
Functions:
<ul>
<li> abs(x) == absolute value
<li> acos(x) == arccosine
<li> acosh(x) == hyperbolic arccosine
<li> ai(x), bi(x) == Airy functions (two independent solutions of the differential equation <code>y"(x) = xy</code>).
<li> asin(x) == arcsine
<li> asinh(x) == hyperbolic arcsine
<li> atan(x) == arctangent
<li> atan2(y,x) == Fortran ATAN2
<li> atanh(x) == hyperbolic arctangent
<li> beta(x) == beta function
<li> ceil(x) == greatest integer function
<li> chdtr(df, x) == chi-square distribution
<li> chdtrc(v, x) == complemented Chi-square distribution
<li> chdtri(df, y) == inverse of complemented Chi-square distribution
<li> chi(x) == hyperbolic cosine integral
<li> ci(x) == cosine integral
<li> cos(x) == cosine
<li> cosh(x) == hyperbolic cosine
<li> dawsn(x) == Dawson's integral
<li> deg == 180.0/PI
<li> dx == span of world coordinate system in x
<li> dy == span of world coordinate system in y
<li> ellie(phi, m) == incomplete elliptic integral of the second kind
<li> ellik(phi, m) == incomplete elliptic integral of the first kind
<li> ellpe(m) == complete elliptic integral of the second kind
<li> ellpk(m) == complete elliptic integral of the first kind
<li> erf(x) == error function
<li> erfc(x) == complement of error function
<li> exp(x) == e^x
<li> expn(x) == exponential integral
<li> fac(n) == factorial function, n!
<li> fdtr(df1, df2, x) == F distribution function
<li> fdtrc(x) == complemented F distribution
<li> fdtri(x) == inverse of complemented F distribution
<li> floor(x) == least integer function
<li> fresnlc(x) == cosine Fresnel integral
<li> fresnls(x) == sine Fresnel integral
<li> gamma(x) == gamma function
<li> gdtr(a, b, x) == gamma distribution function
<li> gdtrc(a, b, x) == complemented gamma distribution function
<li> hyp2f1(a, b, c, x) == Gauss hyper-geometric function
<li> hyperg(a, b, x) == confluent hyper-geometric function
<li> i0e(x) == modified Bessel function of order zero, exponentially scaled
<li> i1e(x) == modified Bessel function of order one, exponentially scaled
<li> igam(a, x) == incomplete gamma integral
<li> igamc(a, x) == complemented incomplete gamma integral
<li> igami(a, p) == inverse of complemented incomplete gamma integral
<li> incbet(a, b, x) == incomplete beta integral
<li> incbi(a, b, y) == Inverse of incomplete beta integral
<li> index == the index of the current point in the selected set
<li> irand(n) == random integer less than n
<li> iv(v, x) == modified Bessel function of order v
<li> jv(v, x) == Bessel function of order v
<li> k0e(x) == modified Bessel function, third kind, order zero, exponentially scaled
<li> k1e(x) == modified Bessel function, third kind, order one, exponentially scaled
<li> kn(n, x) == modified Bessel function, third kind, integer order
<li> lbeta(x) == natural log of |beta(x)|
<li> lgamma(x) == log of gamma function
<li> ln(x) == natural log
<li> log10(x) == log base 10
<li> log2(x) == base 2 logarithm of x
<li> max(x,y) == returns greater of x and y
<li> min(x,y) == returns lesser of x and y
<li> mod(x,y) == mod function (also x % y)
<li> ndtr(x) == Normal distribution function
<li> ndtri(x) == inverse of Normal distribution function
<li> norm(x) == gaussian density function
<li> pdtr(k, m) == Poisson distribution
<li> pdtrc(k, m) == complemented Poisson distribution
<li> pdtri(k, y) == inverse Poisson distribution
<li> pi == constant PI
<li> psi(x) == psi (digamma) function
<li> rad == PI/180.0
<li> rand == pseudo random number distributed uniformly on (0.0,1.0)
<li> rint(x) == round to closest integer
<li> rgamma(x) == reciprocal gamma function
<li> rnorm(xbar,s) == pseudo random number distributed N(xbar,s)
<li> shi(x) == hyperbolic sine integral
<li> si(x) == sine integral
<li> sin(x) == hyperbolic sine
<li> sin(x) == sine function
<li> spence(x) == dilogarithm
<li> sqr(x) == x^2
<li> sqrt(x) == x^0.5
<li> stdtr(k, t) == Student's t distribution
<li> stdtri(k, p) == functional inverse of Student's t distribution
<li> struve(v, x) == Struve function
<li> tan(x) == tangent function
<li> tanh(x) == hyperbolic tangent
<li> x == currently selected set X
<li> y == currently selected set Y
<li> yv(v, x) == Bessel function of order v
<li> zeta(x, q) == Riemann zeta function of two arguments
<li> zetac(x) == Riemann zeta function
</ul>
<p>
Note: See pars.yacc for the yacc grammar.
<p>
Examples:
<p>
y=-y
<p>
y=x*cos(2*x*PI/100)+sqr(x)
<p>
x=(index>10)*(x-5)+(index<=10)*x
<p>
If the index of the current point is greater than 10 then x=x-5 else x=x.
Conditionals evaluate to 0 if false, anything else is true.
<p>
a=y
<p>
Store y of the current set into scratch array "a". You may now select
another set and perform the operation y=somefunctionof(a)
<p>
Restrictions:
<p>
<HR>
<h3> <a NAME="load">Load values</a> </h3>
<p>
Load a sequence to (x,y) or (a,b,c,d).
<p>
<HR>
<h3> <a NAME="leval">Load and evaluate</a> </h3>
<p>
Evaluate parametric functions.
<p>
Enter the functions to be used to define X and Y.
<p>
Select the independent variable (x,y,a,b,c,d).
<p>
Enter the start, stop and the number of points items.
<p>
Press the button <b>Apply</b> to evaluate the functions and load
the result to a new set.
<p>
<HR>
<h3> <a NAME="histo">Histogram</a> </h3>
<p>
Compute a frequency histogram.
<p>
Select the set.
<p>
Enter the width of a bin (all bin widths are the same).
<p>
Enter the minimum and maximum values of the portion of the data you
wish histoed (sic). Note that Xmin and Xmax refer to the RANGE (or Y) of
the set, not the domain (or X).
<p>
Press <b>Accept</b> to compute the histogram.
<p>
<HR>
<h3> <a NAME="fourier">Fourier</a> </h3>
<p>
Compute the Discrete Fourier transform.
<p>
Select the set
<p>
Select the type of data window, the default is the
rectangular window, i.e., the data are transformed unmodified.
The data windows are defined as follows:
<dl>
<dt> None
<dd>Use the default rectangular window
<dt> Triangular
<dd> 1.0 - |(i-0.5*(N-1))/(0.5*(N-1))|
<dt> Hanning
<dd> 0.5 * [1-cos(2*pi*i/(N-1))]
<dt> Welch
<dd> 1-((i-0.5*(N-1))/(0.5*(N+1)))^2
<dt> Hamming
<dd> 0.54-0.46*cos(2*pi*i/(N-1))
<dt> Blackman
<dd> 0.42-0.5*cos(2*pi*i/(N-1))+0.08*cos(4*pi*i/(N-1))
<dt> Parzen
<dd> 1.0 - |(i-0.5*(N-1))/(0.5*(N+1))|
</dl>
<p>
Select the form of the output, magnitude (spectrum), phase, or the
coefficients. The spectrum is computed by sqrt(x*x + y*y) where x, y are
the coefficients computed by the DFT or FFT. Only N/2 values (representing
frequencies 0 to PI) are loaded to the resulting set.
<p>
If the magnitude or phase is selected, then the next item, `X = `,
determines what values should be loaded to X. The index runs from 0 to n/2,
the frequency is the cyclical ith Fourier frequency, the period is the
reciprocal of the frequency with the period of the 0th Fourier frequency
plotted at T+delta, where T is the total length of the data and delta is the
sampling interval.
<p>
Select transform or inverse transform.
<p>
Select real or complex data.
<p>
If real is selected, then the data to be transformed is assumed to be
in Y, X is assumed equally spaced and is ignored. If complex is selected
then the real part is assumed to be in X and the imaginary part in Y.
<p>
Press DFT (for small data sets whose length is not a power of 2) - or
FFT (for data sets whose length is a power of 2).
<p>
Click on <b>Window only</b> to generated a windowed version of the
data in a new set.
<p>
NOTE: Small for the DFT is < 1000 points. The DFT is O(N**2) and can be
quite time consuming to compute for large N.
<p>
<HR>
<h3> <a NAME="running">Running averages</a> </h3>
<p>
Compute a running average, median, minimum, maximum, or standard deviation.
<p>
Select the method.
<p>
Select the set.
<p>
Set the length of the running method in the text item marked
<b>Length</b>, it must be less than the set length.
<p>
Click on <b>Accept</b>.
<p>
<HR>
<h3> <a NAME="regression">Regression</a> </h3>
<p>
Perform linear or polynomial regression.
<p>
Select the set.
<p>
Select the degree of fit.
<p>
Select fitted curve or residuals to load.
<p>
Press the button marked "Regress".
<p>
A set is loaded (if there is one) with the resulting curve and a summary
of the statistical results are written to the <b>Result</b> popup.
<p>
Notes:
The fitting techniques used by xmgr are as follows:
For linear fits (y=ax+b) a straightforward least squares procedure is used. For
exponential and power fits, the function to fit is linearized, it is important to
note that the statistics generated refer to the parameters of the linearized function
and not the original function.
<p>
<HR>
<h3> <a NAME="nlcurve">Non-linear curve fitting</a> </h3>
<p>
<ol>
<li>Select the set you would like to approximate.
<li>The unknown parameters to fit are labeled A0 to A9 (case insensitive).
Type in the function using the parameters, starting with A0.
<li>Enter the number of parameters.
<li>Adjust the tolerance.
<li>Choose initial values (1 by default) and specify bounds (if required)
for the parameters.
<li> Specify what you would like to view from <b>Options/Load</b>
<dl>
<dt> Fitted values
<dd> Value of approximating function at abscissa of selected set
<dt> Residuals
<dd> Error in approximating function at abscissa of selected set
<dt> Function
<dd> Approximating function at abscissa defined by <b>Start</b>, <b>Stop</b>
and <b># of points </b>
</dl>
<li>Run the fitting routine by specifying the number of convergence steps you wish to
perform (5/20/100).
<li> At any time, you may <b>Load as is</b> the values if
<b>Options/autoload</b> is not selected.
<li> Look at the results and
repeat any of the above steps until satisfied. Results will continue to be loaded to
the same newly created set.
<li> Press <b> Accept</b> to make the new set permanent or <b>Cancel</b> to
destroy it.
</ol>
Fit definitions can be saved/loaded from the <b>File</b> pull-down menu of the
Non-linear fitting popup.
<p>
<HR>
<h3> <a NAME="diff">Differences</a> </h3>
<p>
Numerical differentiation.
<p>
Select the set.
<p>
Select the method - one of forward, backward, or centered difference.
Assumes unevenly spaced data, increasing in X.
<p>
Click on <b>Accept</b>.
<p>
A set is loaded (if there is one) with the resulting curve.
<p>
<HR>
<h3> <a NAME="seasdiff">Seasonal differences</a> </h3>
<p>
Difference a set by a given lag.
<p>
Select the set.
<p>
Enter the value for the lag. Assumptions are evenly spaced data,
increasing in X.
<p>
Press the button marked <b>Accept</b>.
<p>
Use <b>Pick</b> to use the mouse to select the set by clicking
near a point in the set as displayed in the drawing area.
<p>
A set is loaded (if there is one) with the resulting curve.
<p>
<HR>
<h3> <a NAME="int">Integration</a> </h3>
<p>
Numerical integration.
<p>
Select the set.
<p>
Select the form of the results, the item marked <b>cumulative sum</b>
will construct a set composed of the current value of the integral at a
given X. Sum only reports just the value on the next line. Assumes unevenly
spaced data, increasing in X.
<p>
Press the button marked <b>Integrate</b>.
<p>
A set is loaded (if there is one) with the resulting curve if
<b>cumulative sum</b> is chosen.
<p>
<HR>
<h3> <a NAME="xcorr">X-corr</a> </h3>
<p>
Cross/auto-correlation
<p>
Select both sets (use the same set if autocorrelation is desired).
<p>
Select the lag, N/3 is a reasonable value (your mileage may vary).
<p>
Select bias - generally this will not make any difference for large
data sets with lags << the length of the set, I was just curious. The
difference is division by N (biased) or N-lag (unbiased).
A set is loaded (if there is one) with the resulting curve.
<p>
<HR>
<h3> <a NAME="interp">Interpolation</a> </h3>
<p>
Create a new set by performing interpolation on one set at abscissas from
another set. All sets are in the current graph. This will allow pointwise
mathematical operations to be performed between the new set and the set
providing the abscissas using the <A HREF="data.html#commands">command
interpreter</A>.
<p>
Choose the set on which to interpolate which will provide the Y values. Select
a second set which will provide the X values for the new set.
<p>
The interpolation method can be a cubic or Akima spline or linear.
<p>
<HR>
<h3> <a NAME="spline">Spline</a> </h3>
<p>
Compute a spline fit to a set
<p>
Select the set.
<p>
Select the starting value of X for the fitted curve.
<p>
Select the ending value of X.
<p>
Select the number of samples. The spline curve will be evaluated at
X+i*(MaxX - MinX)/Nsteps for each i in (0, Nsteps-1).
<p>
Select the type of the spline. It could be either plain cubic one or
Akima spline. The latter should be preferred when approximating
sufficiently non-smooth series.
<p>
Press "Spline"
<p>
A set is loaded (if there is one) with the resulting curve.
<p>
Notes: The code to compute the spline is a literal translation of the
code in FMM.
<p>
<HR>
<h3> <a NAME="sample">Sample</a> </h3>
<p>
Sample a set pointwise or by a logical expression.
<p>
Select the set.
<p>
Select the type of sample, either Start/step or Logical expression.
If Start/step is selected then enter the starting index to begin the sample.
<p>
Select the number of points to skip between samples in <b>Step</b>.
If <b>Logical expression</b> is selected, enter the expression in the text
item denoted <b>Expr:</b>. Values of the expression not equal to zero are
interpreted as TRUE, and the point is accepted. Any expression evaluating
to zero will result in the point being ignored.
<p>
<HR>
<h3> <a NAME="prune">Prune data</a> </h3>
<P>
Prune the data of a set by removing points. This is useful if the
resolution of your data is higher than the resolution of the graphics
device (screen or hardcopy). You can reduce the size of project files
and increase the speed of redraws by removing redundant points.
<P>
<OL>
<LI> Select the set.
<P>
<LI> Select the type of data pruning:
<P>
<DL>
<DT> Interpolation:
<DD> The interpolation type calculates for each point a linear
interpolation of that point based on its neighbors and removes the
point if real y-value and interpolated y-value differ by less than
Delta-Y. The interpolation type requires that the set is sorted: if
both x and y are functions of another variable t, i.e. x(t) and y(t),
the set has to be sorted by t. It is, of course, possible that x(t)=t.
<P>
<DT> Circle, Ellipse, Rectangle:
<DD> These three types remove all points within a circular, elliptical,
or rectangular surrounding of previous points in the set. No particular
order of points is required. Those types are useful, e.g., for sets that
are not quasi-continuous time series but rather discrete maps (just
an example: depict the current heart period versus the previous heart
period).
</DL>
<P>
<LI> Select the size of the surrounding (Delta-X and/or Delta-Y).
<P>
<LI> Select whether the size of the surrounding is specified as
viewport or world coordinates.
<P>
<DL>
<DT> Viewport coordinates:
<DD> Delta-X and Delta-Y are specified as viewport coordinates. This
is most useful if you just want to make a graph and don't care about
absolute errors.
<P>
<DT> World coordinates:
<DD> Sometimes (for example, in bifurcation diagrams) points
(approximately) coincide, and you want to compress the data by
removing the "doubles" without significantly increasing the
granularity of the data. In other words, you don't care about any
specific graphics device but rather about the maximum absolute error
caused by pruning. This is important, for example, if you want to use
the pruned set for further calculations. In that case, it is better to
use world coordinates.
You need to specify the type of Delta-X and Delta-Y (linear or
logarithmic). They default to the axes types of the current graph. If
one of the Deltas is logarithmic, it is considered a factor. For
example, interpolation type pruning with logarithmic Delta-Y type and
Delta-Y = 2 means to remove all points for which interpolated and real
value differ by a factor of less than two.
</DL>
</OL>
<P>
<HR>
<h3> <a NAME="digitalfilter">Digital filter</a> </h3>
<p>
Apply a digital filter to a set.
<p>
Select the set to be filtered
<p>
Select the set with the filter weights.
<p>
<HR>
<h3> <a NAME="lconv">Linear convolution</a> </h3>
<p>
Perform convolution of 2 sets.
<p>
<HR>
<h3> <a NAME="geom">Geometric transformations</a> </h3>
<p>
Apply rotations, scaling, and translations to a set.
<p>
Select the order in which to apply the transformations.
<p>
Press the button <b>Apply</b> to perform the transformation.
<p>
Press the <b>Reset</b> to reset values and return to the identity
transformation.
<p>
Press the <b>Reset</b> to reset values and return to the identity
transformation.
<p>
Restrictions: Only the set X and Y are transformed, additional vectors
attached to a set, such as error bars, are not transformed.
<HR>
<p>
<h3> <a NAME="featext">Feature extraction</a> </h3>
<p>
Given a set of curves in a graph, extract a feature from each curve and use
the values of the feature to provide the Y values for a new curve.
<dl>
<dt> Results to graph:
<dd> graph to which new curve is to be assigned. It must be an active graph.
<dt> Feature
<dd> feature to be extracted. See table below.
<dt> X values from:
<dd> source of X values for the new curve to be generated.
<ol>
<li> Index - use the number of the curve in the graph, i.e., 1,2,3,...
<li> Legend - use the legend from the curve from which the feature is
extracted. This must be a number.
<li> X from set - use the X values from a set specified below
<li> Y from set - use Y values from set specified below
</ol>
<dt> Accept
<dd> generate the curve
</dl>
<table align=middle border="5" width="90%">
<tr><th> Feature</th><th>Description</th></tr>
<tr><td>Y minimum</td><td> Minimum Y value of set</td></tr>
<tr><td>Y maximum</td><td>Maximum Y value of set</td></tr>
<tr><td>Y average</td><td>Average Y value of set</td></tr>
<tr><td>Y std. dev.</td><td>Standard deviation of Y values</td></tr>
<tr><td>Y median</td><td>Median Y value</td></tr>
<tr><td>X minimum</td><td>Minimum X value of set</td></tr>
<tr><td>X maximum</td><td>Maximum X value of set</td></tr>
<tr><td>X average</td><td>Average X value of set</td></tr>
<tr><td>X std. dev.</td><td>Standard deviation of X values</td></tr>
<tr><td>X median</td><td>Median X value</td></tr>
<tr><td>Frequency</td><td>Perform DFT (FFT if set length a power of 2) to find largest frequency component</td></tr>
<tr><td>Period</td><td>Inverse of above </td></tr>
<tr><td>Zero crossing</td><td>Time of the first zero crossing, + or - going</td></tr>
<tr><td>Rise time</td><td>Assume curve starts at the minimum and rises to the maximum, get time
to go from 10% to 90% of rise. For single exponential curves, this is 2.2*time
constant</td></tr>
<tr><td>Fall time</td><td>Assume curve starts at the maximum and drops to the minimum, get time
to go from 90% to 10% of fall</td></tr>
<tr><td>Slope</td><td>Perform linear regression to obtain slope</td></tr>
<tr><td>Y intercept</td><td>Perform linear regression to obtain Y-intercept</td></tr>
<tr><td>Set length</td><td>Number of data points in set</td></tr>
<tr><td>Half maximal width</td><td>Assume curve starts from the minimum, rises
to the maximum and drops to the minimum again. Determine the time for which the curve is
elevated more than 50% of the maximum rise.</td></tr>
<tr><td>Barycenter X</td><td>Barycenter along X axis</td></tr>
<tr><td>Barycenter Y</td><td>Barycenter along Y axis</td></tr>
</table>
</BODY>
</HTML>
|