1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
<chapter id="xmlsec-notes-x509">
<title>Using X509 Certificates.</title>
<sect1 id="xmlsec-notes-x509-overview">
<title>Overview.</title>
<para>X509 certificate is one of many possible keys data object that can be
associated with a key. Application may read and write X509 data
from/to XML file. The X509 certificates management policies significantly
vary from one crypto library to another. The examples in this chapter
were tested with OpenSSL and they might be broken if anither crypto
engine is used. Check API reference documentation for more specific
information about your crypto engine.
</para>
</sect1>
<sect1 id="xmlsec-notes-sign-x509" >
<title>Signing data with X509 certificate.</title>
<para>To sign a file using X509 certificate,
an application need to associate the certificate (or certificates)
with the private key using one of the following functions:
<itemizedlist>
<listitem><para>
<link linkend="xmlSecOpenSSLAppKeyCertLoad">xmlSecOpenSSLAppKeyCertLoad</link> - loads
certificate from a file and adds to the key;
</para></listitem>
<listitem><para>
<link linkend="xmlSecOpenSSLAppPkcs12Load">xmlSecOpenSSLAppPkcs12Load</link> -
loads private key and all the certificates associated with it from a PKCS12 file;
</para></listitem>
<listitem><para>
<link linkend="xmlSecKeyAdoptData">xmlSecKeyAdoptData</link> - low level
function to add key data (including X509 key data) to the key.
</para></listitem>
</itemizedlist>
<example>
<title>Loading private key and X509 certificate.</title>
<programlisting><![CDATA[
/* load private key, assuming that there is not password */
key = xmlSecCryptoAppKeyLoad(key_file, xmlSecKeyDataFormatPem, NULL, NULL, NULL);
if(key == NULL) {
fprintf(stderr,"Error: failed to load private pem key from \"%s\"\n", key_file);
goto done;
}
/* load certificate and add to the key */
if(xmlSecCryptoAppKeyCertLoad(key, cert_file, xmlSecKeyDataFormatPem) < 0) {
fprintf(stderr,"Error: failed to load pem certificate \"%s\"\n", cert_file);
goto done;
}
]]></programlisting>
<simpara><link linkend="xmlsec-example-sign3">Full program listing</link></simpara>
</example>
</para>
<para>Next step is to prepare signature template with <dsig:X509Data/>
child of the <dsig:KeyInfo/> element. When XML Security Library finds
this node in the template, it automaticaly creates <dsig:X509Certificate/>
children of the <dsig:X509Data/> element and writes to result XML document
all the certificates associated with the signature key.
<example>
<title>Dynamicaly creating a signature template for signing document using X509 certificate.</title>
<programlisting><![CDATA[
/* create signature template for RSA-SHA1 enveloped signature */
signNode = xmlSecTmplSignatureCreate(doc, xmlSecTransformExclC14NId,
xmlSecTransformRsaSha1Id, NULL);
if(signNode == NULL) {
fprintf(stderr, "Error: failed to create signature template\n");
goto done;
}
/* add <dsig:Signature/> node to the doc */
xmlAddChild(xmlDocGetRootElement(doc), signNode);
/* add reference */
refNode = xmlSecTmplSignatureAddReference(signNode, xmlSecTransformSha1Id,
NULL, NULL, NULL);
if(refNode == NULL) {
fprintf(stderr, "Error: failed to add reference to signature template\n");
goto done;
}
/* add enveloped transform */
if(xmlSecTmplReferenceAddTransform(refNode, xmlSecTransformEnvelopedId) == NULL) {
fprintf(stderr, "Error: failed to add enveloped transform to reference\n");
goto done;
}
/* add <dsig:KeyInfo/> and <dsig:X509Data/> */
keyInfoNode = xmlSecTmplSignatureEnsureKeyInfo(signNode, NULL);
if(keyInfoNode == NULL) {
fprintf(stderr, "Error: failed to add key info\n");
goto done;
}
if(xmlSecTmplKeyInfoAddX509Data(keyInfoNode) == NULL) {
fprintf(stderr, "Error: failed to add X509Data node\n");
goto done;
}
]]></programlisting>
<simpara><link linkend="xmlsec-example-sign3">Full program listing</link></simpara>
</example>
</para>
</sect1>
<sect1 id="xmlsec-notes-verify-x509" >
<title>Verifing document signed with X509 certificates.</title>
<para>
If the document is signed with an X509 certificate then the signature
verification consist of two steps:
<itemizedlist>
<listitem><para>Creating and verifing X509 certificates chain.
</para></listitem>
<listitem><para>Verifing signature itself using key exrtacted from
a certificate verified on previous step.
</para></listitem>
</itemizedlist>
Certificates chain is constructed from certificates in a way that
each certificate in the chain is signed with previous one:
<figure>
<title>Certificates chain.</title>
<programlisting>
Certificate A (signed with B) <- Certificate B (signed with C) <- ... <- Root Certificate (signed by itself)
</programlisting>
</figure>
At the end of the chain there is a "Root Certificate" which
is signed by itself. There is no way to verify the validity of the
root certificate and application have to "trust" it
(another name for root certificates is "trusted" certificates).
</para>
<para>
Application can use <link linkend="xmlSecCryptoAppKeysMngrCertLoad">xmlSecCryptoAppKeysMngrCertLoad</link>
function to load both "trusted" and "un-trusted"
certificates. However, the selection of "trusted"
certificates is very sensitive process and this function might be
not implemented for some crypto engines. In this case, the
"trusted" certificates list is loaded during initialization
or specified in crypto engine configuration files.
Check XML Security Library API reference for more details.
<example>
<title>Loading trusted X509 certificate.</title>
<programlisting><![CDATA[
/**
* load_trusted_certs:
* @files: the list of filenames.
* @files_size: the number of filenames in #files.
*
* Creates simple keys manager and load trusted certificates from PEM #files.
* The caller is responsible for destroing returned keys manager using
* @xmlSecKeysMngrDestroy.
*
* Returns the pointer to newly created keys manager or NULL if an error
* occurs.
*/
xmlSecKeysMngrPtr
load_trusted_certs(char** files, int files_size) {
xmlSecKeysMngrPtr mngr;
int i;
assert(files);
assert(files_size > 0);
/* create and initialize keys manager, we use a simple list based
* keys manager, implement your own xmlSecKeysStore klass if you need
* something more sophisticated
*/
mngr = xmlSecKeysMngrCreate();
if(mngr == NULL) {
fprintf(stderr, "Error: failed to create keys manager.\n");
return(NULL);
}
if(xmlSecCryptoAppDefaultKeysMngrInit(mngr) < 0) {
fprintf(stderr, "Error: failed to initialize keys manager.\n");
xmlSecKeysMngrDestroy(mngr);
return(NULL);
}
for(i = 0; i < files_size; ++i) {
assert(files[i]);
/* load trusted cert */
if(xmlSecCryptoAppKeysMngrCertLoad(mngr, files[i], xmlSecKeyDataFormatPem, xmlSecKeyDataTypeTrusted) < 0) {
fprintf(stderr,"Error: failed to load pem certificate from \"%s\"\n", files[i]);
xmlSecKeysMngrDestroy(mngr);
return(NULL);
}
}
return(mngr);
}
]]></programlisting>
<simpara><link linkend="xmlsec-example-verify3">Full program listing</link></simpara>
</example>
</para>
</sect1>
</chapter>
|