1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
|
{-# OPTIONS -fglasgow-exts -w #-}
module Properties where
import XMonad.StackSet hiding (filter)
import XMonad.Layout
import XMonad.Core hiding (workspaces,trace)
import XMonad.Operations ( applyResizeIncHint, applyMaxSizeHint )
import qualified XMonad.StackSet as S (filter)
import Debug.Trace
import Data.Word
import Graphics.X11.Xlib.Types (Rectangle(..),Position,Dimension)
import Data.Ratio
import Data.Maybe
import System.Environment
import Control.Exception (assert)
import qualified Control.Exception as C
import Control.Monad
import Test.QuickCheck hiding (promote)
import System.IO.Unsafe
import System.IO
import System.Random hiding (next)
import Text.Printf
import Data.List (nub,sort,sortBy,group,sort,intersperse,genericLength)
import qualified Data.List as L
import Data.Char (ord)
import Data.Map (keys,elems)
import qualified Data.Map as M
-- ---------------------------------------------------------------------
-- QuickCheck properties for the StackSet
-- Some general hints for creating StackSet properties:
--
-- * ops that mutate the StackSet are usually local
-- * most ops on StackSet should either be trivially reversible, or
-- idempotent, or both.
--
-- The all important Arbitrary instance for StackSet.
--
instance (Integral i, Integral s, Eq a, Arbitrary a, Arbitrary l, Arbitrary sd)
=> Arbitrary (StackSet i l a s sd) where
arbitrary = do
sz <- choose (1,10) -- number of workspaces
n <- choose (0,sz-1) -- pick one to be in focus
sc <- choose (1,sz) -- a number of physical screens
lay <- arbitrary -- pick any layout
sds <- replicateM sc arbitrary
ls <- vector sz -- a vector of sz workspaces
-- pick a random item in each stack to focus
fs <- sequence [ if null s then return Nothing
else liftM Just (choose ((-1),length s-1))
| s <- ls ]
return $ fromList (fromIntegral n, sds,fs,ls,lay)
-- | fromList. Build a new StackSet from a list of list of elements,
-- keeping track of the currently focused workspace, and the total
-- number of workspaces. If there are duplicates in the list, the last
-- occurence wins.
--
-- 'o' random workspace
-- 'm' number of physical screens
-- 'fs' random focused window on each workspace
-- 'xs' list of list of windows
--
fromList :: (Integral i, Integral s, Eq a) => (i, [sd], [Maybe Int], [[a]], l) -> StackSet i l a s sd
fromList (_,_,_,[],_) = error "Cannot build a StackSet from an empty list"
fromList (o,m,fs,xs,l) =
let s = view o $
foldr (\(i,ys) s ->
foldr insertUp (view i s) ys)
(new l [0..genericLength xs-1] m) (zip [0..] xs)
in foldr (\f t -> case f of
Nothing -> t
Just i -> foldr (const focusUp) t [0..i] ) s fs
------------------------------------------------------------------------
--
-- Just generate StackSets with Char elements.
--
type T = StackSet (NonNegative Int) Int Char Int Int
-- Useful operation, the non-local workspaces
hidden_spaces x = map workspace (visible x) ++ hidden x
-- Basic data invariants of the StackSet
--
-- With the new zipper-based StackSet, tracking focus is no longer an
-- issue: the data structure enforces focus by construction.
--
-- But we still need to ensure there are no duplicates, and master/and
-- the xinerama mapping aren't checked by the data structure at all.
--
-- * no element should ever appear more than once in a StackSet
-- * the xinerama screen map should be:
-- -- keys should always index valid workspaces
-- -- monotonically ascending in the elements
-- * the current workspace should be a member of the xinerama screens
--
invariant (s :: T) = and
-- no duplicates
[ noDuplicates
-- all this xinerama stuff says we don't have the right structure
-- , validScreens
-- , validWorkspaces
-- , inBounds
]
where
ws = concat [ focus t : up t ++ down t
| w <- workspace (current s) : map workspace (visible s) ++ hidden s
, t <- maybeToList (stack w)] :: [Char]
noDuplicates = nub ws == ws
-- validScreens = monotonic . sort . M. . (W.current s : W.visible : W$ s
-- validWorkspaces = and [ w `elem` allworkspaces | w <- (M.keys . screens) s ]
-- where allworkspaces = map tag $ current s : prev s ++ next s
-- inBounds = and [ w >=0 && w < size s | (w,sc) <- M.assocs (screens s) ]
monotonic [] = True
monotonic (x:[]) = True
monotonic (x:y:zs) | x == y-1 = monotonic (y:zs)
| otherwise = False
prop_invariant = invariant
-- and check other ops preserve invariants
prop_empty_I (n :: Positive Int) l = forAll (choose (1,fromIntegral n)) $ \m ->
forAll (vector m) $ \ms ->
invariant $ new l [0..fromIntegral n-1] ms
prop_view_I (n :: NonNegative Int) (x :: T) =
invariant $ view (fromIntegral n) x
prop_greedyView_I (n :: NonNegative Int) (x :: T) =
invariant $ greedyView (fromIntegral n) x
prop_focusUp_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const focusUp) x [1..n]
prop_focusMaster_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const focusMaster) x [1..n]
prop_focusDown_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const focusDown) x [1..n]
prop_focus_I (n :: NonNegative Int) (x :: T) =
case peek x of
Nothing -> True
Just _ -> let w = focus . fromJust . stack . workspace . current $ foldr (const focusUp) x [1..n]
in invariant $ focusWindow w x
prop_insertUp_I n (x :: T) = invariant $ insertUp n x
prop_delete_I (x :: T) = invariant $
case peek x of
Nothing -> x
Just i -> delete i x
prop_swap_master_I (x :: T) = invariant $ swapMaster x
prop_swap_left_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const swapUp ) x [1..n]
prop_swap_right_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const swapDown) x [1..n]
prop_shift_I (n :: NonNegative Int) (x :: T) =
n `tagMember` x ==> invariant $ shift (fromIntegral n) x
prop_shift_win_I (n :: NonNegative Int) (w :: Char) (x :: T) =
n `tagMember` x && w `member` x ==> invariant $ shiftWin (fromIntegral n) w x
-- ---------------------------------------------------------------------
-- 'new'
-- empty StackSets have no windows in them
prop_empty (EmptyStackSet x) =
all (== Nothing) [ stack w | w <- workspace (current x)
: map workspace (visible x) ++ hidden x ]
-- empty StackSets always have focus on first workspace
prop_empty_current (NonEmptyNubList ns) (NonEmptyNubList sds) l =
-- TODO, this is ugly
length sds <= length ns ==>
tag (workspace $ current x) == head ns
where x = new l ns sds :: T
-- no windows will be a member of an empty workspace
prop_member_empty i (EmptyStackSet x)
= member i x == False
-- ---------------------------------------------------------------------
-- viewing workspaces
-- view sets the current workspace to 'n'
prop_view_current (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
tag (workspace $ current (view i x)) == i
where
i = fromIntegral n
-- view *only* sets the current workspace, and touches Xinerama.
-- no workspace contents will be changed.
prop_view_local (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
workspaces x == workspaces (view i x)
where
workspaces a = sortBy (\s t -> tag s `compare` tag t) $
workspace (current a)
: map workspace (visible a) ++ hidden a
i = fromIntegral n
-- view should result in a visible xinerama screen
-- prop_view_xinerama (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
-- M.member i (screens (view i x))
-- where
-- i = fromIntegral n
-- view is idempotent
prop_view_idem (x :: T) (i :: NonNegative Int) = i `tagMember` x ==> view i (view i x) == (view i x)
-- view is reversible, though shuffles the order of hidden/visible
prop_view_reversible (i :: NonNegative Int) (x :: T) =
i `tagMember` x ==> normal (view n (view i x)) == normal x
where n = tag (workspace $ current x)
-- ---------------------------------------------------------------------
-- greedyViewing workspaces
-- greedyView sets the current workspace to 'n'
prop_greedyView_current (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
tag (workspace $ current (greedyView i x)) == i
where
i = fromIntegral n
-- greedyView leaves things unchanged for invalid workspaces
prop_greedyView_current_id (x :: T) (n :: NonNegative Int) = not (i `tagMember` x) ==>
tag (workspace $ current (greedyView i x)) == j
where
i = fromIntegral n
j = tag (workspace (current x))
-- greedyView *only* sets the current workspace, and touches Xinerama.
-- no workspace contents will be changed.
prop_greedyView_local (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
workspaces x == workspaces (greedyView i x)
where
workspaces a = sortBy (\s t -> tag s `compare` tag t) $
workspace (current a)
: map workspace (visible a) ++ hidden a
i = fromIntegral n
-- greedyView is idempotent
prop_greedyView_idem (x :: T) (i :: NonNegative Int) = i `tagMember` x ==> greedyView i (greedyView i x) == (greedyView i x)
-- greedyView is reversible, though shuffles the order of hidden/visible
prop_greedyView_reversible (i :: NonNegative Int) (x :: T) =
i `tagMember` x ==> normal (greedyView n (greedyView i x)) == normal x
where n = tag (workspace $ current x)
-- normalise workspace list
normal s = s { hidden = sortBy g (hidden s), visible = sortBy f (visible s) }
where
f = \a b -> tag (workspace a) `compare` tag (workspace b)
g = \a b -> tag a `compare` tag b
-- ---------------------------------------------------------------------
-- Xinerama
-- every screen should yield a valid workspace
-- prop_lookupWorkspace (n :: NonNegative Int) (x :: T) =
-- s < M.size (screens x) ==>
-- fromJust (lookupWorkspace s x) `elem` (map tag $ current x : prev x ++ next x)
-- where
-- s = fromIntegral n
-- ---------------------------------------------------------------------
-- peek/index
-- peek either yields nothing on the Empty workspace, or Just a valid window
prop_member_peek (x :: T) =
case peek x of
Nothing -> True {- then we don't know anything -}
Just i -> member i x
-- ---------------------------------------------------------------------
-- index
-- the list returned by index should be the same length as the actual
-- windows kept in the zipper
prop_index_length (x :: T) =
case stack . workspace . current $ x of
Nothing -> length (index x) == 0
Just it -> length (index x) == length (focus it : up it ++ down it)
-- ---------------------------------------------------------------------
-- rotating focus
--
-- master/focus
--
-- The tiling order, and master window, of a stack is unaffected by focus changes.
--
prop_focus_left_master (n :: NonNegative Int) (x::T) =
index (foldr (const focusUp) x [1..n]) == index x
prop_focus_right_master (n :: NonNegative Int) (x::T) =
index (foldr (const focusDown) x [1..n]) == index x
prop_focus_master_master (n :: NonNegative Int) (x::T) =
index (foldr (const focusMaster) x [1..n]) == index x
prop_focusWindow_master (n :: NonNegative Int) (x :: T) =
case peek x of
Nothing -> True
Just _ -> let s = index x
i = fromIntegral n `mod` length s
in index (focusWindow (s !! i) x) == index x
-- shifting focus is trivially reversible
prop_focus_left (x :: T) = (focusUp (focusDown x)) == x
prop_focus_right (x :: T) = (focusDown (focusUp x)) == x
-- focus master is idempotent
prop_focusMaster_idem (x :: T) = focusMaster x == focusMaster (focusMaster x)
-- focusWindow actually leaves the window focused...
prop_focusWindow_works (n :: NonNegative Int) (x :: T) =
case peek x of
Nothing -> True
Just _ -> let s = index x
i = fromIntegral n `mod` length s
in (focus . fromJust . stack . workspace . current) (focusWindow (s !! i) x) == (s !! i)
-- rotation through the height of a stack gets us back to the start
prop_focus_all_l (x :: T) = (foldr (const focusUp) x [1..n]) == x
where n = length (index x)
prop_focus_all_r (x :: T) = (foldr (const focusDown) x [1..n]) == x
where n = length (index x)
-- prop_rotate_all (x :: T) = f (f x) == f x
-- f x' = foldr (\_ y -> rotate GT y) x' [1..n]
-- focus is local to the current workspace
prop_focus_down_local (x :: T) = hidden_spaces (focusDown x) == hidden_spaces x
prop_focus_up_local (x :: T) = hidden_spaces (focusUp x) == hidden_spaces x
prop_focus_master_local (x :: T) = hidden_spaces (focusMaster x) == hidden_spaces x
prop_focusWindow_local (n :: NonNegative Int) (x::T ) =
case peek x of
Nothing -> True
Just _ -> let s = index x
i = fromIntegral n `mod` length s
in hidden_spaces (focusWindow (s !! i) x) == hidden_spaces x
-- On an invalid window, the stackset is unmodified
prop_focusWindow_identity (n :: Char) (x::T ) =
not (n `member` x) ==> focusWindow n x == x
-- ---------------------------------------------------------------------
-- member/findTag
--
-- For all windows in the stackSet, findTag should identify the
-- correct workspace
--
prop_findIndex (x :: T) =
and [ tag w == fromJust (findTag i x)
| w <- workspace (current x) : map workspace (visible x) ++ hidden x
, t <- maybeToList (stack w)
, i <- focus t : up t ++ down t
]
prop_allWindowsMember w (x :: T) = (w `elem` allWindows x) ==> member w x
prop_currentTag (x :: T) =
currentTag x == tag (workspace (current x))
-- ---------------------------------------------------------------------
-- 'insert'
-- inserting a item into an empty stackset means that item is now a member
prop_insert_empty i (EmptyStackSet x)= member i (insertUp i x)
-- insert should be idempotent
prop_insert_idem i (x :: T) = insertUp i x == insertUp i (insertUp i x)
-- insert when an item is a member should leave the stackset unchanged
prop_insert_duplicate i (x :: T) = member i x ==> insertUp i x == x
-- push shouldn't change anything but the current workspace
prop_insert_local (x :: T) i = not (member i x) ==> hidden_spaces x == hidden_spaces (insertUp i x)
-- Inserting a (unique) list of items into an empty stackset should
-- result in the last inserted element having focus.
prop_insert_peek (EmptyStackSet x) (NonEmptyNubList is) =
peek (foldr insertUp x is) == Just (head is)
-- insert >> delete is the identity, when i `notElem` .
-- Except for the 'master', which is reset on insert and delete.
--
prop_insert_delete n x = not (member n x) ==> delete n (insertUp n y) == (y :: T)
where
y = swapMaster x -- sets the master window to the current focus.
-- otherwise, we don't have a rule for where master goes.
-- inserting n elements increases current stack size by n
prop_size_insert is (EmptyStackSet x) =
size (foldr insertUp x ws ) == (length ws)
where
ws = nub is
size = length . index
-- ---------------------------------------------------------------------
-- 'delete'
-- deleting the current item removes it.
prop_delete x =
case peek x of
Nothing -> True
Just i -> not (member i (delete i x))
where _ = x :: T
-- delete is reversible with 'insert'.
-- It is the identiy, except for the 'master', which is reset on insert and delete.
--
prop_delete_insert (x :: T) =
case peek x of
Nothing -> True
Just n -> insertUp n (delete n y) == y
where
y = swapMaster x
-- delete should be local
prop_delete_local (x :: T) =
case peek x of
Nothing -> True
Just i -> hidden_spaces x == hidden_spaces (delete i x)
-- delete should not affect focus unless the focused element is what is being deleted
prop_delete_focus n (x :: T) = member n x && Just n /= peek x ==> peek (delete n x) == peek x
-- focus movement in the presence of delete:
-- when the last window in the stack set is focused, focus moves `up'.
-- usual case is that it moves 'down'.
prop_delete_focus_end (x :: T) =
length (index x) > 1
==>
peek (delete n y) == peek (focusUp y)
where
n = last (index x)
y = focusWindow n x -- focus last window in stack
-- focus movement in the presence of delete:
-- when not in the last item in the stack, focus moves down
prop_delete_focus_not_end (x :: T) =
length (index x) > 1 &&
n /= last (index x)
==>
peek (delete n x) == peek (focusDown x)
where
Just n = peek x
-- ---------------------------------------------------------------------
-- filter
-- preserve order
prop_filter_order (x :: T) =
case stack $ workspace $ current x of
Nothing -> True
Just s@(Stack i _ _) -> integrate' (S.filter (/= i) s) == filter (/= i) (integrate' (Just s))
-- ---------------------------------------------------------------------
-- swapUp, swapDown, swapMaster: reordiring windows
-- swap is trivially reversible
prop_swap_left (x :: T) = (swapUp (swapDown x)) == x
prop_swap_right (x :: T) = (swapDown (swapUp x)) == x
-- TODO swap is reversible
-- swap is reversible, but involves moving focus back the window with
-- master on it. easy to do with a mouse...
{-
prop_promote_reversible x b = (not . null . fromMaybe [] . flip index x . current $ x) ==>
(raiseFocus y . promote . raiseFocus z . promote) x == x
where _ = x :: T
dir = if b then LT else GT
(Just y) = peek x
(Just (z:_)) = flip index x . current $ x
-}
-- swap doesn't change focus
prop_swap_master_focus (x :: T) = peek x == (peek $ swapMaster x)
-- = case peek x of
-- Nothing -> True
-- Just f -> focus (stack (workspace $ current (swap x))) == f
prop_swap_left_focus (x :: T) = peek x == (peek $ swapUp x)
prop_swap_right_focus (x :: T) = peek x == (peek $ swapDown x)
-- swap is local
prop_swap_master_local (x :: T) = hidden_spaces x == hidden_spaces (swapMaster x)
prop_swap_left_local (x :: T) = hidden_spaces x == hidden_spaces (swapUp x)
prop_swap_right_local (x :: T) = hidden_spaces x == hidden_spaces (swapDown x)
-- rotation through the height of a stack gets us back to the start
prop_swap_all_l (x :: T) = (foldr (const swapUp) x [1..n]) == x
where n = length (index x)
prop_swap_all_r (x :: T) = (foldr (const swapDown) x [1..n]) == x
where n = length (index x)
prop_swap_master_idempotent (x :: T) = swapMaster (swapMaster x) == swapMaster x
-- ---------------------------------------------------------------------
-- shift
-- shift is fully reversible on current window, when focus and master
-- are the same. otherwise, master may move.
prop_shift_reversible i (x :: T) =
i `tagMember` x ==> case peek y of
Nothing -> True
Just _ -> normal ((view n . shift n . view i . shift i) y) == normal y
where
y = swapMaster x
n = tag (workspace $ current y)
------------------------------------------------------------------------
-- shiftMaster
-- focus/local/idempotent same as swapMaster:
prop_shift_master_focus (x :: T) = peek x == (peek $ shiftMaster x)
prop_shift_master_local (x :: T) = hidden_spaces x == hidden_spaces (shiftMaster x)
prop_shift_master_idempotent (x :: T) = shiftMaster (shiftMaster x) == shiftMaster x
-- ordering is constant modulo the focused window:
prop_shift_master_ordering (x :: T) = case peek x of
Nothing -> True
Just m -> L.delete m (index x) == L.delete m (index $ shiftMaster x)
-- ---------------------------------------------------------------------
-- shiftWin
-- shiftWin on current window is the same as shift
prop_shift_win_focus i (x :: T) =
i `tagMember` x ==> case peek x of
Nothing -> True
Just w -> shiftWin i w x == shift i x
-- shiftWin on a non-existant window is identity
prop_shift_win_indentity i w (x :: T) =
i `tagMember` x && not (w `member` x) ==> shiftWin i w x == x
-- shiftWin leaves the current screen as it is, if neither i is the tag
-- of the current workspace nor w on the current workspace
prop_shift_win_fix_current i w (x :: T) =
i `tagMember` x && w `member` x && i /= n && findTag w x /= Just n
==> (current $ x) == (current $ shiftWin i w x)
where
n = tag (workspace $ current x)
------------------------------------------------------------------------
-- properties for the floating layer:
prop_float_reversible n (x :: T) =
n `member` x ==> sink n (float n geom x) == x
where
geom = RationalRect 100 100 100 100
prop_float_geometry n (x :: T) =
n `member` x ==> let s = float n geom x
in M.lookup n (floating s) == Just geom
where
geom = RationalRect 100 100 100 100
prop_float_delete n (x :: T) =
n `member` x ==> let s = float n geom x
t = delete n s
in not (n `member` t)
where
geom = RationalRect 100 100 100 100
------------------------------------------------------------------------
prop_screens (x :: T) = n `elem` screens x
where
n = current x
prop_differentiate xs =
if null xs then differentiate xs == Nothing
else (differentiate xs) == Just (Stack (head xs) [] (tail xs))
where _ = xs :: [Int]
-- looking up the tag of the current workspace should always produce a tag.
prop_lookup_current (x :: T) = lookupWorkspace scr x == Just tg
where
(Screen (Workspace tg _ _) scr _) = current x
-- looking at a visible tag
prop_lookup_visible (x :: T) =
visible x /= [] ==>
fromJust (lookupWorkspace scr x) `elem` tags
where
tags = [ tag (workspace y) | y <- visible x ]
scr = last [ screen y | y <- visible x ]
-- ---------------------------------------------------------------------
-- testing for failure
-- and help out hpc
prop_abort x = unsafePerformIO $ C.catch (abort "fail")
(\e -> return $ show e == "xmonad: StackSet: fail" )
where
_ = x :: Int
-- new should fail with an abort
prop_new_abort x = unsafePerformIO $ C.catch f
(\e -> return $ show e == "xmonad: StackSet: non-positive argument to StackSet.new" )
where
f = new undefined{-layout-} [] [] `seq` return False
_ = x :: Int
-- prop_view_should_fail = view {- with some bogus data -}
-- screens makes sense
prop_screens_works (x :: T) = screens x == current x : visible x
------------------------------------------------------------------------
-- renaming tags
-- | Rename a given tag if present in the StackSet.
-- 408 renameTag :: Eq i => i -> i -> StackSet i l a s sd -> StackSet i l a s sd
prop_rename1 (x::T) o n = o `tagMember` x && not (n `tagMember` x) ==>
let y = renameTag o n x
in n `tagMember` y
-- |
-- Ensure that a given set of workspace tags is present by renaming
-- existing workspaces and\/or creating new hidden workspaces as
-- necessary.
--
prop_ensure (x :: T) l xs = let y = ensureTags l xs x
in and [ n `tagMember` y | n <- xs ]
-- adding a tag should create a new hidden workspace
prop_ensure_append (x :: T) l n =
not (n `tagMember` x)
==>
(hidden y /= hidden x -- doesn't append, renames
&&
and [ isNothing (stack z) && layout z == l | z <- hidden y, tag z == n ]
)
where
y = ensureTags l (n:ts) x
ts = [ tag z | z <- workspaces x ]
prop_mapWorkspaceId (x::T) = x == mapWorkspace id x
prop_mapWorkspaceInverse (x::T) = x == mapWorkspace predTag (mapWorkspace succTag x)
where predTag w = w { tag = pred $ tag w }
succTag w = w { tag = succ $ tag w }
prop_mapLayoutId (x::T) = x == mapLayout id x
prop_mapLayoutInverse (x::T) = x == mapLayout pred (mapLayout succ x)
------------------------------------------------------------------------
-- The Tall layout
-- 1 window should always be tiled fullscreen
prop_tile_fullscreen rect = tile pct rect 1 1 == [rect]
where pct = 1/2
-- multiple windows
prop_tile_non_overlap rect windows nmaster = noOverlaps (tile pct rect nmaster windows)
where _ = rect :: Rectangle
pct = 3 % 100
-- splitting horizontally yields sensible results
prop_split_hoziontal (NonNegative n) x =
{-
trace (show (rect_x x
,rect_width x
,rect_x x + fromIntegral (rect_width x)
,map rect_x xs))
$
-}
sum (map rect_width xs) == rect_width x
&&
all (== rect_height x) (map rect_height xs)
&&
(map rect_x xs) == (sort $ map rect_x xs)
where
xs = splitHorizontally n x
-- splitting horizontally yields sensible results
prop_splitVertically (r :: Rational) x =
rect_x x == rect_x a && rect_x x == rect_x b
&&
rect_width x == rect_width a && rect_width x == rect_width b
{-
trace (show (rect_x x
,rect_width x
,rect_x x + fromIntegral (rect_width x)
,map rect_x xs))
$
-}
where
(a,b) = splitVerticallyBy r x
-- pureLayout works.
prop_purelayout_tall n r1 r2 rect (t :: T) =
isJust (peek t) ==>
length ts == length (index t)
&&
noOverlaps (map snd ts)
&&
description layoot == "Tall"
where layoot = Tall n r1 r2
st = fromJust . stack . workspace . current $ t
ts = pureLayout layoot rect st
-- Test message handling of Tall
-- what happens when we send a Shrink message to Tall
prop_shrink_tall (NonNegative n) (NonZero (NonNegative delta)) (NonNegative frac) =
n == n' && delta == delta' -- these state components are unchanged
&& frac' <= frac && (if frac' < frac then frac' == 0 || frac' == frac - delta
else frac == 0 )
-- remaining fraction should shrink
where
l1 = Tall n delta frac
Just l2@(Tall n' delta' frac') = l1 `pureMessage` (SomeMessage Shrink)
-- pureMessage :: layout a -> SomeMessage -> Maybe (layout a)
-- what happens when we send a Shrink message to Tall
prop_expand_tall (NonNegative n)
(NonZero (NonNegative delta))
(NonNegative n1)
(NonZero (NonNegative d1)) =
n == n'
&& delta == delta' -- these state components are unchanged
&& frac' >= frac
&& (if frac' > frac
then frac' == 1 || frac' == frac + delta
else frac == 1 )
-- remaining fraction should shrink
where
frac = min 1 (n1 % d1)
l1 = Tall n delta frac
Just l2@(Tall n' delta' frac') = l1 `pureMessage` (SomeMessage Expand)
-- pureMessage :: layout a -> SomeMessage -> Maybe (layout a)
-- what happens when we send an IncMaster message to Tall
prop_incmaster_tall (NonNegative n) (NonZero (NonNegative delta)) (NonNegative frac)
(NonNegative k) =
delta == delta' && frac == frac' && n' == n + k
where
l1 = Tall n delta frac
Just l2@(Tall n' delta' frac') = l1 `pureMessage` (SomeMessage (IncMasterN k))
-- pureMessage :: layout a -> SomeMessage -> Maybe (layout a)
-- toMessage LT = SomeMessage Shrink
-- toMessage EQ = SomeMessage Expand
-- toMessage GT = SomeMessage (IncMasterN 1)
------------------------------------------------------------------------
-- Full layout
-- pureLayout works for Full
prop_purelayout_full rect (t :: T) =
isJust (peek t) ==>
length ts == 1 -- only one window to view
&&
snd (head ts) == rect -- and sets fullscreen
&&
fst (head ts) == fromJust (peek t) -- and the focused window is shown
where layoot = Full
st = fromJust . stack . workspace . current $ t
ts = pureLayout layoot rect st
-- what happens when we send an IncMaster message to Full --- Nothing
prop_sendmsg_full (NonNegative k) =
isNothing (Full `pureMessage` (SomeMessage (IncMasterN k)))
prop_desc_full = description Full == show Full
------------------------------------------------------------------------
prop_desc_mirror n r1 r2 = description (Mirror $! t) == "Mirror Tall"
where t = Tall n r1 r2
------------------------------------------------------------------------
noOverlaps [] = True
noOverlaps [_] = True
noOverlaps xs = and [ verts a `notOverlap` verts b
| a <- xs
, b <- filter (a /=) xs
]
where
verts (Rectangle a b w h) = (a,b,a + fromIntegral w - 1, b + fromIntegral h - 1)
notOverlap (left1,bottom1,right1,top1)
(left2,bottom2,right2,top2)
= (top1 < bottom2 || top2 < bottom1)
|| (right1 < left2 || right2 < left1)
------------------------------------------------------------------------
-- Aspect ratios
prop_resize_inc (NonZero (NonNegative inc_w),NonZero (NonNegative inc_h)) b@(w,h) =
w' `mod` inc_w == 0 && h' `mod` inc_h == 0
where (w',h') = applyResizeIncHint a b
a = (inc_w,inc_h)
prop_resize_inc_extra ((NonNegative inc_w)) b@(w,h) =
(w,h) == (w',h')
where (w',h') = applyResizeIncHint a b
a = (-inc_w,0::Dimension)-- inc_h)
prop_resize_max (NonZero (NonNegative inc_w),NonZero (NonNegative inc_h)) b@(w,h) =
w' <= inc_w && h' <= inc_h
where (w',h') = applyMaxSizeHint a b
a = (inc_w,inc_h)
prop_resize_max_extra ((NonNegative inc_w)) b@(w,h) =
(w,h) == (w',h')
where (w',h') = applyMaxSizeHint a b
a = (-inc_w,0::Dimension)-- inc_h)
------------------------------------------------------------------------
main :: IO ()
main = do
args <- fmap (drop 1) getArgs
let n = if null args then 100 else read (head args)
(results, passed) <- liftM unzip $ mapM (\(s,a) -> printf "%-40s: " s >> a n) tests
printf "Passed %d tests!\n" (sum passed)
when (not . and $ results) $ fail "Not all tests passed!"
where
tests =
[("StackSet invariants" , mytest prop_invariant)
,("empty: invariant" , mytest prop_empty_I)
,("empty is empty" , mytest prop_empty)
,("empty / current" , mytest prop_empty_current)
,("empty / member" , mytest prop_member_empty)
,("view : invariant" , mytest prop_view_I)
,("view sets current" , mytest prop_view_current)
,("view idempotent" , mytest prop_view_idem)
,("view reversible" , mytest prop_view_reversible)
-- ,("view / xinerama" , mytest prop_view_xinerama)
,("view is local" , mytest prop_view_local)
,("greedyView : invariant" , mytest prop_greedyView_I)
,("greedyView sets current" , mytest prop_greedyView_current)
,("greedyView is safe " , mytest prop_greedyView_current_id)
,("greedyView idempotent" , mytest prop_greedyView_idem)
,("greedyView reversible" , mytest prop_greedyView_reversible)
,("greedyView is local" , mytest prop_greedyView_local)
--
-- ,("valid workspace xinerama", mytest prop_lookupWorkspace)
,("peek/member " , mytest prop_member_peek)
,("index/length" , mytest prop_index_length)
,("focus left : invariant", mytest prop_focusUp_I)
,("focus master : invariant", mytest prop_focusMaster_I)
,("focus right: invariant", mytest prop_focusDown_I)
,("focusWindow: invariant", mytest prop_focus_I)
,("focus left/master" , mytest prop_focus_left_master)
,("focus right/master" , mytest prop_focus_right_master)
,("focus master/master" , mytest prop_focus_master_master)
,("focusWindow master" , mytest prop_focusWindow_master)
,("focus left/right" , mytest prop_focus_left)
,("focus right/left" , mytest prop_focus_right)
,("focus all left " , mytest prop_focus_all_l)
,("focus all right " , mytest prop_focus_all_r)
,("focus down is local" , mytest prop_focus_down_local)
,("focus up is local" , mytest prop_focus_up_local)
,("focus master is local" , mytest prop_focus_master_local)
,("focus master idemp" , mytest prop_focusMaster_idem)
,("focusWindow is local", mytest prop_focusWindow_local)
,("focusWindow works" , mytest prop_focusWindow_works)
,("focusWindow identity", mytest prop_focusWindow_identity)
,("findTag" , mytest prop_findIndex)
,("allWindows/member" , mytest prop_allWindowsMember)
,("currentTag" , mytest prop_currentTag)
,("insert: invariant" , mytest prop_insertUp_I)
,("insert/new" , mytest prop_insert_empty)
,("insert is idempotent", mytest prop_insert_idem)
,("insert is reversible", mytest prop_insert_delete)
,("insert is local" , mytest prop_insert_local)
,("insert duplicates" , mytest prop_insert_duplicate)
,("insert/peek " , mytest prop_insert_peek)
,("insert/size" , mytest prop_size_insert)
,("delete: invariant" , mytest prop_delete_I)
,("delete/empty" , mytest prop_empty)
,("delete/member" , mytest prop_delete)
,("delete is reversible", mytest prop_delete_insert)
,("delete is local" , mytest prop_delete_local)
,("delete/focus" , mytest prop_delete_focus)
,("delete last/focus up", mytest prop_delete_focus_end)
,("delete ~last/focus down", mytest prop_delete_focus_not_end)
,("filter preserves order", mytest prop_filter_order)
,("swapMaster: invariant", mytest prop_swap_master_I)
,("swapUp: invariant" , mytest prop_swap_left_I)
,("swapDown: invariant", mytest prop_swap_right_I)
,("swapMaster id on focus", mytest prop_swap_master_focus)
,("swapUp id on focus", mytest prop_swap_left_focus)
,("swapDown id on focus", mytest prop_swap_right_focus)
,("swapMaster is idempotent", mytest prop_swap_master_idempotent)
,("swap all left " , mytest prop_swap_all_l)
,("swap all right " , mytest prop_swap_all_r)
,("swapMaster is local" , mytest prop_swap_master_local)
,("swapUp is local" , mytest prop_swap_left_local)
,("swapDown is local" , mytest prop_swap_right_local)
,("shiftMaster id on focus", mytest prop_shift_master_focus)
,("shiftMaster is local", mytest prop_shift_master_local)
,("shiftMaster is idempotent", mytest prop_shift_master_idempotent)
,("shiftMaster preserves ordering", mytest prop_shift_master_ordering)
,("shift: invariant" , mytest prop_shift_I)
,("shift is reversible" , mytest prop_shift_reversible)
,("shiftWin: invariant" , mytest prop_shift_win_I)
,("shiftWin is shift on focus" , mytest prop_shift_win_focus)
,("shiftWin fix current" , mytest prop_shift_win_fix_current)
,("floating is reversible" , mytest prop_float_reversible)
,("floating sets geometry" , mytest prop_float_geometry)
,("floats can be deleted", mytest prop_float_delete)
,("screens includes current", mytest prop_screens)
,("differentiate works", mytest prop_differentiate)
,("lookupTagOnScreen", mytest prop_lookup_current)
,("lookupTagOnVisbleScreen", mytest prop_lookup_visible)
,("screens works", mytest prop_screens_works)
,("renaming works", mytest prop_rename1)
,("ensure works", mytest prop_ensure)
,("ensure hidden semantics", mytest prop_ensure_append)
,("mapWorkspace id", mytest prop_mapWorkspaceId)
,("mapWorkspace inverse", mytest prop_mapWorkspaceInverse)
,("mapLayout id", mytest prop_mapLayoutId)
,("mapLayout inverse", mytest prop_mapLayoutInverse)
-- testing for failure:
,("abort fails", mytest prop_abort)
,("new fails with abort", mytest prop_new_abort)
,("shiftWin identity", mytest prop_shift_win_indentity)
-- tall layout
,("tile 1 window fullsize", mytest prop_tile_fullscreen)
,("tiles never overlap", mytest prop_tile_non_overlap)
,("split hozizontally", mytest prop_split_hoziontal)
,("split verticalBy", mytest prop_splitVertically)
,("pure layout tall", mytest prop_purelayout_tall)
,("send shrink tall", mytest prop_shrink_tall)
,("send expand tall", mytest prop_expand_tall)
,("send incmaster tall", mytest prop_incmaster_tall)
-- full layout
,("pure layout full", mytest prop_purelayout_full)
,("send message full", mytest prop_sendmsg_full)
,("describe full", mytest prop_desc_full)
,("describe mirror", mytest prop_desc_mirror)
-- resize hints
,("window hints: inc", mytest prop_resize_inc)
,("window hints: inc all", mytest prop_resize_inc_extra)
,("window hints: max", mytest prop_resize_max)
,("window hints: max all ", mytest prop_resize_max_extra)
]
------------------------------------------------------------------------
--
-- QC driver
--
debug = False
mytest :: Testable a => a -> Int -> IO (Bool, Int)
mytest a n = mycheck defaultConfig
{ configMaxTest=n
, configEvery = \n args -> let s = show n in s ++ [ '\b' | _ <- s ] } a
-- , configEvery= \n args -> if debug then show n ++ ":\n" ++ unlines args else [] } a
mycheck :: Testable a => Config -> a -> IO (Bool, Int)
mycheck config a = do
rnd <- newStdGen
mytests config (evaluate a) rnd 0 0 []
mytests :: Config -> Gen Result -> StdGen -> Int -> Int -> [[String]] -> IO (Bool, Int)
mytests config gen rnd0 ntest nfail stamps
| ntest == configMaxTest config = done "OK," ntest stamps >> return (True, ntest)
| nfail == configMaxFail config = done "Arguments exhausted after" ntest stamps >> return (True, ntest)
| otherwise =
do putStr (configEvery config ntest (arguments result)) >> hFlush stdout
case ok result of
Nothing ->
mytests config gen rnd1 ntest (nfail+1) stamps
Just True ->
mytests config gen rnd1 (ntest+1) nfail (stamp result:stamps)
Just False ->
putStr ( "Falsifiable after "
++ show ntest
++ " tests:\n"
++ unlines (arguments result)
) >> hFlush stdout >> return (False, ntest)
where
result = generate (configSize config ntest) rnd2 gen
(rnd1,rnd2) = split rnd0
done :: String -> Int -> [[String]] -> IO ()
done mesg ntest stamps = putStr ( mesg ++ " " ++ show ntest ++ " tests" ++ table )
where
table = display
. map entry
. reverse
. sort
. map pairLength
. group
. sort
. filter (not . null)
$ stamps
display [] = ".\n"
display [x] = " (" ++ x ++ ").\n"
display xs = ".\n" ++ unlines (map (++ ".") xs)
pairLength xss@(xs:_) = (length xss, xs)
entry (n, xs) = percentage n ntest
++ " "
++ concat (intersperse ", " xs)
percentage n m = show ((100 * n) `div` m) ++ "%"
------------------------------------------------------------------------
instance Arbitrary Char where
arbitrary = choose ('a','z')
coarbitrary n = coarbitrary (ord n)
instance Random Word8 where
randomR = integralRandomR
random = randomR (minBound,maxBound)
instance Arbitrary Word8 where
arbitrary = choose (minBound,maxBound)
coarbitrary n = variant (fromIntegral ((fromIntegral n) `rem` 4))
instance Random Word64 where
randomR = integralRandomR
random = randomR (minBound,maxBound)
instance Arbitrary Word64 where
arbitrary = choose (minBound,maxBound)
coarbitrary n = variant (fromIntegral ((fromIntegral n) `rem` 4))
integralRandomR :: (Integral a, RandomGen g) => (a,a) -> g -> (a,g)
integralRandomR (a,b) g = case randomR (fromIntegral a :: Integer,
fromIntegral b :: Integer) g of
(x,g) -> (fromIntegral x, g)
instance Arbitrary Position where
arbitrary = do n <- arbitrary :: Gen Word8
return (fromIntegral n)
coarbitrary = undefined
instance Arbitrary Dimension where
arbitrary = do n <- arbitrary :: Gen Word8
return (fromIntegral n)
coarbitrary = undefined
instance Arbitrary Rectangle where
arbitrary = do
sx <- arbitrary
sy <- arbitrary
sw <- arbitrary
sh <- arbitrary
return $ Rectangle sx sy sw sh
coarbitrary = undefined
instance Arbitrary Rational where
arbitrary = do
n <- arbitrary
d' <- arbitrary
let d = if d' == 0 then 1 else d'
return (n % d)
coarbitrary = undefined
------------------------------------------------------------------------
-- QC 2
-- from QC2
-- | NonEmpty xs: guarantees that xs is non-empty.
newtype NonEmptyList a = NonEmpty [a]
deriving ( Eq, Ord, Show, Read )
instance Arbitrary a => Arbitrary (NonEmptyList a) where
arbitrary = NonEmpty `fmap` (arbitrary `suchThat` (not . null))
coarbitrary = undefined
newtype NonEmptyNubList a = NonEmptyNubList [a]
deriving ( Eq, Ord, Show, Read )
instance (Eq a, Arbitrary a) => Arbitrary (NonEmptyNubList a) where
arbitrary = NonEmptyNubList `fmap` ((liftM nub arbitrary) `suchThat` (not . null))
coarbitrary = undefined
type Positive a = NonZero (NonNegative a)
newtype NonZero a = NonZero a
deriving ( Eq, Ord, Num, Integral, Real, Enum, Show, Read )
instance (Num a, Ord a, Arbitrary a) => Arbitrary (NonZero a) where
arbitrary = fmap NonZero $ arbitrary `suchThat` (/= 0)
coarbitrary = undefined
newtype NonNegative a = NonNegative a
deriving ( Eq, Ord, Num, Integral, Real, Enum, Show, Read )
instance (Num a, Ord a, Arbitrary a) => Arbitrary (NonNegative a) where
arbitrary =
frequency
[ (5, (NonNegative . abs) `fmap` arbitrary)
, (1, return 0)
]
coarbitrary = undefined
newtype EmptyStackSet = EmptyStackSet T deriving Show
instance Arbitrary EmptyStackSet where
arbitrary = do
(NonEmptyNubList ns) <- arbitrary
(NonEmptyNubList sds) <- arbitrary
l <- arbitrary
-- there cannot be more screens than workspaces:
return . EmptyStackSet . new l ns $ take (min (length ns) (length sds)) sds
coarbitrary = error "coarbitrary EmptyStackSet"
-- | Generates a value that satisfies a predicate.
suchThat :: Gen a -> (a -> Bool) -> Gen a
gen `suchThat` p =
do mx <- gen `suchThatMaybe` p
case mx of
Just x -> return x
Nothing -> sized (\n -> resize (n+1) (gen `suchThat` p))
-- | Tries to generate a value that satisfies a predicate.
suchThatMaybe :: Gen a -> (a -> Bool) -> Gen (Maybe a)
gen `suchThatMaybe` p = sized (try 0 . max 1)
where
try _ 0 = return Nothing
try k n = do x <- resize (2*k+n) gen
if p x then return (Just x) else try (k+1) (n-1)
|