1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
/* spline.c: cubic spline interpolation
// Spring 1993
//
Written and Copyright (C) 1993-1997 by Michael J. Gourlay
This file is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This file is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with software; see the file LICENSE. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "spline.h"
#include "my_malloc.h"
/* --------------------------------------------------------------- */
#define MAX(a,b) ((a)>(b)?(a):(b))
#define MIN(a,b) ((a)<(b)?(a):(b))
#define ABS(a) ((a)>=0?(a):(-(a)))
/* --------------------------------------------------------------- */
/* NAME
// spline3_setup: set parameters for natural cubic spline
//
// ARGUMENTS
// x (in): knot abcissas
// y (in): knot ordinates
// n (in): number of knots
// c (out): spline parameters
// h (out): intervals: h[i] = x[i+1] - x[i]
*/
void
spline3_setup(const REAL *x, const REAL *y, long n, REAL *c, REAL *h)
{
REAL *u, *v;
long i;
/* only need u and v to index from 1 to n-1 */
u=MY_CALLOC(n, REAL);
v=MY_CALLOC(n, REAL);
for(i=0; i<n; i++) {
h[i]=x[i+1]-x[i];
}
for(i=1; i<n; i++) {
v[i]=3.0/h[i]*(y[i+1]-y[i]) - 3.0/h[i-1]*(y[i]-y[i-1]);
u[i]=2.0*(h[i]+h[i-1]);
}
c[0]=c[n]=0;
for(i=n-1; i>0; i--) {
c[i]=(v[i]-h[i]*c[i+1])/u[i];
}
FREE(u);
FREE(v);
}
/* --------------------------------------------------------------- */
/* NAME
// spline3_eval -- evaluate the natural cubic spline
//
// ARGUMENTS
// w (in): argument abcissa: abcissa-value at which spline is evaluated
// x (in): array of knot abcissa values, in increasing order
// y (in): array of knot ordinate values
// n (in): number of knots
// c (in): array of parameters from spline3_setup
// h (in): array of intervals between x's
// s1 (out): spline first derivative
// s2 (out): spline second derivative
//
// DESCRIPTION
// Evaluate a spline interpolant at the given abcissa "w".
// if s1==NULL then s1 is not evaluated
// if s2==NULL then s2 is not evaluated
//
// RETURN VALUE
// spline interpolant value at "w".
*/
REAL
spline3_eval(REAL w, const REAL *x, const REAL *y, long n,
const REAL *c, const REAL *h, REAL *s1, REAL *s2)
{
REAL diff=0.0;
REAL b, d;
long i;
/* find interval of spline to evaluate */
for(i=n-1; (i>=0) && ((diff=(w-x[i]))<0.0); i--)
;
/* calculate other spline parameters */
/* here a=y[i] so it is not explicitly named a */
b = (y[i+1]-y[i])/h[i] - h[i]/3.0*(2.0*c[i] + c[i+1]);
d = (c[i+1]-c[i])/h[i];
/* evaluate derivatives of spline */
if(s1!=NULL) *s1 = b + diff*(2.0*c[i] + 3.0*d*diff);
if(s2!=NULL) *s2 = 2.0*(c[i] + 3.0*d*diff);
/* return spline value */
return (y[i] + diff*(b + diff*(c[i] + diff*d)));
}
/* --------------------------------------------------------------- */
/* NAME
// d_parabola -- returns the derivative of a parabola fit through 3 points
//
// To find this formula:
// A parabola is
// y = a x^2 + b x + c. (eqn 1)
// Write this for 3 points, (x0,y0) (x1,y1), (x2,y2):
// y0 = a x0^2 + b x0 + c (eqn 2 i)
// y1 = a x1^2 + b x1 + c (eqn 2 ii)
// y2 = a x2^2 + b x2 + c (eqn 2 iii)
// Solve this system for the constants a, b, c.
// Substitute these a, b, c back into (eqn 1). Take the derivative of
// (eqn 1).
*/
REAL
d_parabola(REAL x, REAL xp0, REAL xp1, REAL xp2,
REAL yp0, REAL yp1, REAL yp2)
{
REAL dP=( xp0*(yp1-yp2)*(2.0*x - xp0)
+ xp1*(yp2-yp0)*(2.0*x - xp1)
+ xp2*(yp0-yp1)*(2.0*x - xp2)) / ((xp0-xp1)*(xp0-xp2)*(xp2-xp1));
return dP;
}
/* --------------------------------------------------------------- */
/* NAME
// hermite3_interp : cubic hermite interpolation
//
//
// ARGUMENTS
// w (in): evaluation abcissa
// w should be in the range x[0] <= w <= x[n-1]
//
// x (in): abcissas at knots
// abcissas should be ordered such that x[0] < x[1] < ... < x[n-1]
//
// y (in): ordinates at knots
//
// d (in/out): derivatives at knots
//
// n: (in): number of knots
//
// f: (in): derivative function (or NULL if not available)
//
// flags (in): bit field:
// (flags&1): compute_deriv:
// 0 => use d as input, 1 => compute d
// NOTE: if compute_deriv == 1 and f == NULL then the
// derivatives are estimated using a parabola fit.
// (flags&2): periodic:
// 0 => non-periodic domain, 1 => periodic domain
// NOTE: for periodic domain, the abcissa of the
// point outside of the explicitly provided domain
// is estimated by using the distance between the
// outer 2 points to find the distance to the next
// point.
// h1 (out): first derivative of spline, NULL=>ignore
//
// h2 (out): second derivative of spline, NULL=>ignore
//
//
// DESCRIPTION
// This interpolant is cubic (i.e. is a third order polynomial) fit
// through two knots where the values of the function and the values of
// the first derivative of the function are known at the knots.
// (Stricly speaking, the values of the derivatives do not need to be
// analytically known, since some estimate of the derivative can be
// used.)
//
//
// RETURN VALUE
// Evaluation of interpolation
//
//
// NOTES
// The estimated derivatives can be pretty lousy.
//
// To derive this formula:
// Call the interpolant H(x). Name the values
// H(x_i) = y_i H'(x_i) = d_i
// H(x_(i+1)) = y_(i+1) H'(x_(i+1)) = d_(i+1)
// The interpolant has the form
// H(x) = y_i + h_i d_i + h_i^2 A + h_i^2 B (x - x_(i+1))
// where
// h_i = x_(i+1) - x_i
// The derivative therefore has the form
// H'(x) = d_i + 2 A h_i + B (2 h_i (x - x_(i+1)) + h_i^2)
// Now substitute in the values at x_(i+1) into H and H', and set them
// equal to y_(i+1) and d_(i+1) respectively to get A and B.
//
// The interpolant is a proper function, where x is the abcissa and
// y is the ordinate. However, if data is provided such that
// the interpolant is not a function such that each abcissa
// has exactly one ordinate (i.e. where some subset of x values
// overlap), then the interpolant will give incorrect results.
// If this is the case then the data you are trying to interpolate
// can not be represented by a proper function, so you will have
// to parameterize the data with some third parameter variable
// (usually refered to as t), and interpolate x and y with respect
// to that third variable.
*/
REAL
hermite3_interp(REAL w, const REAL *x, const REAL *y, REAL *d, long n,
REAL (*f)(REAL), int flags, REAL *h1, REAL *h2)
{
double A, B;
double h, h_2;
double diff=0.0;
double H;
long si;
int compute_deriv = (flags&1);
int periodic = (flags&2);
#if (VERBOSE >= 3)
printf("hermite3_interp: at %12g\n", w);
for(si=0; si < n; si++) {
printf("hermite3_interp: [%4li] x = % 12g y = % 12g\n", si, x[si], y[si]);
}
#endif
/* Find interval of spline to evaluate
// I.e. find the index such that the evaluation abcissa, w, is to
// the right of the abcissa associated with that index. Then, x is
// between x[si] and x[si+1].
*/
/* MJG 14jul95 -- do not start at si=n-1. See "h =" line below.
// MJG 18jul94 -- was reading beyond bounds at last knot. (maybe)
*/
for(si=n-2; (si>=0) && ((diff=(w-x[si])) < 0.0); si--)
;
/* We are sitting at a knot so no interpolation needed */
if(0.0 == diff) {
#if (VERBOSE >= 3)
printf("hermite3_interp: at knot %li\n", si);
#endif
return y[si];
}
/* h is the interval between knots */
h = x[si+1] - x[si];
h_2 = h*h;
#if (VERBOSE >= 3)
printf("hermite3_interp: si = %li diff = %12g\n", si, diff);
printf("hermite3_interp: h = %12g h^2 = %12g\n", h, h_2);
#endif
/* either the derivatives were provided or must be found */
if(compute_deriv) {
/* must calculate derivatives */
if(f != NULL) {
/* calculate the derivative */
d[si]=(*f)(x[si]);
d[si+1]=(*f)(x[si+1]);
} else {
/* approximate derivative using parabola fit */
if(0 == si) {
/* at first knot */
d[si+1] = d_parabola(x[si+1], x[si], x[si+1], x[si+2],
y[si], y[si+1], y[si+2]);
if(!periodic) {
d[si] = d_parabola(x[si], x[si], x[si+1], x[si+2],
y[si], y[si+1], y[si+2]);
} else { /* periodic */
/* estimate left-end abcissa */
REAL xn = 2.0 * x[si] - x[si+1];
d[si] = d_parabola(x[si], xn, x[si], x[si+1],
y[n-1], y[si], y[si+1]);
}
} else if(si >= (n-2)) {
/* at last or 2nd to last knot */
d[si] = d_parabola(x[si], x[si-1], x[si], x[si+1],
y[si-1], y[si], y[si+1]);
if(!periodic) {
d[si+1] = d_parabola(x[si+1], x[si-1], x[si], x[si+1],
y[si-1], y[si], y[si+1]);
} else { /* periodic */
/* estimate right-end abcissa */
REAL xn = 2.0 * x[si+1] - x[si];
d[si+1] = d_parabola(x[si+1], x[si], x[si+1], xn,
y[si], y[si+1], y[0]);
}
} else {
/* between first and 2nd to last knot */
d[si] = d_parabola(x[si], x[si-1], x[si], x[si+1],
y[si-1], y[si], y[si+1]);
d[si+1] = d_parabola(x[si+1], x[si], x[si+1], x[si+2],
y[si], y[si+1], y[si+2]);
}
}
}
/* calculate interpolant parameters */
A = (y[si+1] - y[si] - h*d[si])/h_2;
B = (d[si+1] - d[si] - 2.0*h*A)/h_2;
/* evaluate spline derivatives */
if(h1!=NULL) *h1 = d[si] + diff*(2.0*A + B*(diff + 2.0*(w-x[si+1])));
if(h2!=NULL) *h2 = 2.0*A + 2.0*B*(2.0*diff + (w-x[si+1]));
/* return the spline evaluation */
H = y[si] + diff*(d[si] + diff*(A + (w-x[si+1])*B));
return H;
}
|