1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
#include "math.h"
#include "resample.h"
#include "strings.h"
/* periodic symmetric extension of src */
#define REFOLD(J,L) { if(J<0) J =-J; J = J % (2*L-1); if(J>=L) J=(2*L-1)-J;}
/* border extension of src */
#define BORD(J,L) { if((J)<0) (J)=0; else if ((J)>(L)) (J)=(L); }
/* zero extension of src */
#define ZERO(J,L) { if(J<0 || J>L) continue; }
/* enforce boundary condition <-> array bounds */
//#define BC(J,L) REFOLD(J,L)
#undef MAX
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#undef MIN
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#undef ABS
#define ABS(a) (((a) < 0) ? -(a) : (a))
#undef CLAMP
#define CLAMP(x, low, high) (((x) > (high)) ? (high) : (((x) < (low)) ? (low) : (x)))
#include "stdio.h"
#include "math.h"
/* these lines should help if you are using braindead MS C compiler */
#ifdef MSVC
#define inline
#define static
#warning static and inline are disabled
#endif
/* void (*resample_array_inv_choices[10])(const double *F, */
/* const PIXEL_TYPE *src, int s_len, int s_stride, */
/* PIXEL_TYPE *dst, int d_len, int d_stride); */
typedef void (* resample_t)(const double *F,
const PIXEL_TYPE *src, int s_len, int s_stride,
PIXEL_TYPE *dst, int d_len, int d_stride);
/*****************************************************************/
// WARNING this is not ANTIALIASED in any way but is very simple and fast
static inline void resample_array_inv_near_neighbor
(const double *F,
const PIXEL_TYPE *src, int s_len, int s_stride,
PIXEL_TYPE *dst, int d_len, int d_stride)
{
int i,p=0,j;
for(i=0;i<d_len;i++) {
j=F[i];
BORD(j,s_len-1)
dst[p]=src[j* s_stride];
p+= d_stride;
}
}
/*********** antialiased using bilinear interpixel**************
* works well when the scale is not reduced and/or when there are not
* very fine grains; it is much faster; it is approximate in many points
* For animations it is better to use antialiased
*/
static void resample_array_inv_bilinear
(const double *F,
const PIXEL_TYPE *src, int s_len, int s_stride,
PIXEL_TYPE *dst, int d_len, int d_stride)
{
int i,p=0,j,nj;
double v,x,dj;
for(i=0;i<d_len;i++) {
x=F[i];
BORD(x,s_len-1);
j=floor(x);
dj=x-j;
nj=j+1;
if(nj>=s_len)
v=src[j* s_stride];
else
v=src[j* s_stride]*(1-dj) + src[nj* s_stride]*dj;
dst[p]=v;
p+= d_stride;
}
}
#ifdef SEEMS_UNNEEDED
int c;
/* I have tested this improvement to
the above, and this seems to introduce ripples;
I don't want to improve it, use AA if you really want AA*/
if( oj>=j+2) {
c=oj-j+1;
if(oj>=s_len) oj=s_len-1;
while (oj>=j) { v+=src[oj* s_stride]; oj--; }
v/=c;
}else
if ( oj+2<=j) {
c=j-oj+1;
if(oj<0) oj=0;
while (oj<=j) { v+=src[oj* s_stride]; oj++; }
v/=c;
} else
#endif
/*********** antialiased using convolutional kernels***************/
#if 256 >= (PIXEL_MAX-PIXEL_MIN)
#include "sinc_256.h"
#else
#include "sinc_1024.h"
#endif
static double sinc(const double x)
{
if (x<0.0001 && x > -0.0001)
return 1;
else
{
double tmp = M_PI * x ;
return sin(tmp) / tmp;
}
}
static double sinc_by_table(const double x)
{
if (x < -4 || x > 4) {
double tmp = M_PI * x ;
return sin(tmp) / tmp;
} else
return sinc_table [(int)((ABS(x))*SINC_TABLE_UNIT )];
}
static double lanczos(const double x)
{
if (x < -2 || x > 2)
return 0;
else
return sinc(x);
}
static double lanczos4(const double x)
{
if (x < -4 || x > 4)
return 0;
else
return sinc(x);
}
static double triangle(const double x)
{
if (x<-1) return 0;
else if(x<0) return x+1;
else if(x<1) return 1-x;
else return 0;
}
// this generates the function name
#define FUN(A) XFUN(A)
#define XFUN(A) resample_array_inv_ ## A
/************* choice of antialiasing kernel **************/
/* optimizations for the case of any kernel based on sinc
suggested by lvalero, oberger 05/05/2004 */
#define KERNEL_sinc_fast
/* if the above is undefined, then this will be used instead
this also is used in creating the function name*/
#define KERNEL lanczos
/* this is the half of the width of the kernel
for lanczos4, it must be 4, otherwise 2*/
#define KERNEL_WIDTH 2
/* this creates the function */
#include "resample_snippet.h"
/* then another function */
#undef KERNEL
#define KERNEL lanczos4
#undef KERNEL_WIDTH
#define KERNEL_WIDTH 4
#include "resample_snippet.h"
/***********end choice of antialiasing kernel **************/
//#struct { fun resample_t; const char *name;]
resample_t resample_choices[10] =
{ FUN(near_neighbor) , FUN(bilinear),
FUN(lanczos),FUN(lanczos4),
NULL};
char * resample_array_inv_names[10] =
{ "near_neighbor" , //choose nearest pixel: fastest, looks bad
"bilinear", //bilinear: same as with the old libmorph warping code
"lanczos", //Lanczos: much better quality, a must for animations
//and/or fine grained images; it is though slower,
"lanczos4",// even better than before, but no noticeable difference on
// most images
NULL};
void (*resample_array_inv)(const double *F,
const PIXEL_TYPE *src, int s_len, int s_stride,
PIXEL_TYPE *dst, int d_len, int d_stride)= FUN(lanczos);
void
mesh_resample_choose_aa(int f)
{
// fprintf(stderr,"\n%s:%d: choice '%s' for kernel!\n",__FILE__,__LINE__,resample_array_inv_names[f] );
resample_array_inv=resample_choices[f];
}
#include <string.h> //strcmp
void
mesh_resample_choose_aa_by_name(char * s)
{
int f=0;
while(resample_choices[f]) {
if (0==strcmp (s,resample_array_inv_names[f]))
{
resample_array_inv=resample_choices[f];
return;
}
f++;
}
fprintf(stderr,"\n%s:%d: no choice '%s' for kernel!\n",__FILE__,__LINE__,s);
}
//EOF
/************************ extra stuff *************************************/
#ifdef ARTIFACTS
/* A Mennucc: this routine that follows was provided by lvalero and oberger;
it uses integers for every double variable,
and directly accesses the sinc table; so it is very very fast;
unfortunately if x and dx are integers, then warping is not precise
to the subpixel , and there are visible artifacts
I have rewritten resample_array_inv_conv (above)
so that it directly accesses the sinc_table , and it uses integers,
but so that it is precise to subpixel
in my tests I could achieve these results
old routine 9.55 sec
new routine 3.50 sec
lvalero,oberger 2.86 sec
note that this routine needs the old style sinc table which is not provided
any more
*/
#include "sinc_table.h"
/* this test was provided by lvalero, oberger 05/05/2004 :*/
/*With one image 2048*2048 in 16 bits, Athlon 1.4Ghz + parhelia 128 Mo + 785 Mo RAM
we have :
for resample_array_inv_conv (optimised) 3s
for resample_array_inv_bilin 2.5s
for resample_array_inv_noaa_ 1.4s*/
//VERSION OPTIMISEE MODIF lvalero, oberger 05/05/2004
static void resample_array_inv_conv (const double *F, const PIXEL_TYPE *src, int s_len, int s_stride, PIXEL_TYPE *dst, int d_len, int d_stride)
{
int i, p = 0, j, lastj ;
int x, nx, px, dx ;
double c, s, v ;
int firstj,index_stride,index,increment ;
for( i = 0 ; i < d_len ; ++i )
{
v=0; c=0;
x=(int)F[i];
nx=(int)F[i+1];
px=(int)F[i-1];
//dx=ABS(nx-px)/2.;
dx=ABS(nx-px) >> 1 ;
if(dx<1) dx=1;
//lastj=ceil(x+dx+dx);
lastj = x+dx+dx ;
// optimisation pour v+=s* (double)src[j*s_stride]; => on economise une multiplication
// par defaut, g met floor pour passer en int, mais ce peut etre mauvais
//firstj=floor(x-dx-dx);
firstj = x-dx-dx;
//index_stride = floor(firstj*s_stride) ;
index_stride = firstj*s_stride ;
// en deroulant la boucle avec j = x-dx-dx on a :
//
// (x-j)/dx = (x-x+dx+dx)/dx = (2*dx)/dx = 2 <- etape 0
// (x-(j+1))/dx = (x-(x+1)+dx+dx)/dx = 2-(1/dx) <- etape 1
// (x-(j+2))/dx = (x-(x+2)+dx+dx)/dx = 2-(2/dx) <- etape 2
// (x-(j+3))/dx = (x-(x+3)+dx+dx)/dx = 2-(3/dx) <- etape 3
// ...
// (x-lastj)/dx = (x-x-dx-dx)/dx = -2 <- etape fin
//
// Donc on a pour l'etape n :
//
// ((2 - (n/dx)) + 4)*100 = (2+4)*100 - (n/dx)*100
// = (2+4)*100 - n*(1/dx)*100
// = (2+4)*100 - n*(100/dx)
// avec le commentaire precedent, on s'apercoit que la premiere valeur est :
//index = (2+4)*100 ;
index = 600 ;
// et l'increment devient :
//increment = floor(100./dx) ;// correspond a (1/dx)*100, mais on racle une multiplication
increment = 100/dx ;
for ( j = firstj ; j <= lastj ; ++j )
{
// avec cette optimisation il convient de changer le test : laisser les operations
// comme elle sont ecrites, le compilo fera le calcul
//if ( index < ((-2+4)*100) /*|| index > ((2+4)*100)*/ )
if ( index < (200) /*|| index > ((2+4)*100)*/ )
s = 0 ;
else
s=sinc_table [index];
if ( j>=0 && j<s_len)
v+=s* (double)src[index_stride];
c+=s;
index -= increment ;
++index_stride ;
}
if (!(c<0.0001 && c > -0.0001)) v /=c ;
dst[p]=(PIXEL_TYPE)CLAMP(v,0,255);
p+= d_stride;
}
}
#endif
|