File: warp.c

package info (click to toggle)
xmorph 1%3A20060817
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 5,688 kB
  • ctags: 2,022
  • sloc: ansic: 19,988; sh: 9,418; cpp: 1,230; makefile: 560; sed: 16
file content (347 lines) | stat: -rw-r--r-- 11,577 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/* warp.c : Digital Image Warping algorithms
//
// See George Wolberg's "Digital Image Warping"
// IEEE Computer Society Press order number 1944
// ISBN 0-8186-8944-7
//
// Copyrights might be held by various authors.  See individual routines.
//

   Written and Copyright (C) 1994-1999 by Michael J. Gourlay

This file is part of Xmorph.

Xmorph is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

Xmorph is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Xmorph; see the file LICENSE.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

*/

#include <stdio.h>
#include <stdlib.h>

#include "my_malloc.h"
#include "spline.h"
#include "spl-array.h"
#include "warp.h"


#define MAX(x,y) ((x)>(y) ? (x) : (y))


#include "resample.h"

/* --------------------------------------------------------------- */

/* resample_array: Fant's resampling algorithm, specialized to
// images with the same dimensions
//
// Based on "Nonaliasing Real-Time Spatial Transform" by Karl M. Fant.
// See IEEE Computer Graphics and Applications v6n1, January 1986.
//
// NOTE: The original code contained array bounds overruns.  I fixed
// the code up without taking resampling theory into consideration.  I
// figured the boundary pixels would be the only things hosed anyway, and
// the original code was dumping core. -- MJG 08jun94
//
// UPDATE: 20jul94: George Wolberg (himself) gives these array bounds
// modifications a thumbs up.
*/

static void
resample_array(const double *F, const PIXEL_TYPE *src, PIXEL_TYPE *dst, int len, int ipo)
{
  int ui, xi;
  double acc, intensity;
  double INSFAC, INSEG, OUTSEG;
  double *inpos; /* forward mapping function */

  /* MJG 08jun94 */
  inpos = MY_CALLOC(len+2, double);

  /* precompute input index for each output pixel */
  for(ui=xi=0; xi<len; xi++) {
    while( ui<(len-1) &&  F[ui+1]<xi ) ui++; /* MJG 08jun94 */

    if(ui<(len-1)) { /* MJG 08jun94 */
      inpos[xi] = ui + (double) (xi - F[ui]) / (F[ui+1] - F[ui]);
    } else {
      inpos[xi] = ui + 1.0 ;
    }
  }
  inpos[len] = len; /* MJG 08jun94 */

  INSEG = 1.0;       /* entire input pixel is available */
  OUTSEG = inpos[1]; /* # input pixels that map onto 1 output pixel */
  INSFAC = OUTSEG;   /* inverse scale factor */
  acc = 0.0;         /* accumulator */

  /* compute all output pixels */
  /* ellenberger@tle.enet.dec.com reports:
  // the loop upper bound should be (len - 1) instead of len
  // Just in case, I'm changing it to (len - 1)
  // Consider this a hack until I figure out what's going on. -- 13sep95 MJG
  */
  /* for(xi = ui = 0; xi < len; ) { */
  for(xi = ui = 0; xi < (len - 1); ) {

#ifdef ARRAY_CHECK
    if(ui > ((len-1)*ipo)) {
      fprintf(stderr, "resample_array: index out of range: %i\n", ui);
    }
#endif

    /* use linear interpolation for reconstruction */
    intensity = (INSEG * src[ui]) + ((1-INSEG) * src[ui+1]);

    /* INSEG < OUTSEG: input pixel is entirely consumed before output pixel */
    if(INSEG < OUTSEG) {
      acc += (intensity * INSEG);  /* accumulation of weighted contrib */
      OUTSEG -= INSEG;             /* INSEG portion has been filled */
      INSEG = 1.0;                 /* new input pixel will be available */
      ui += ipo;                   /* index to next input pixel */
    }

    /* INSEG >= OUTSEG: input pixel is not consumed before output pixel */
    else {
      acc += (intensity * OUTSEG); /* accumulate weighted contrib */

      /* A short hack to prevent an arithmetic exception on division by zero
      // in case INSFAC becomes zero (AT 04feb95) -- Added 13sep95
      // [It seems that when INSFAC is zero, so is acc -- MJG 13sep95]
      */
      if (INSFAC==0) {
        INSFAC = 1;
      }
      /* End of hack (AT 04feb95) */

      dst[xi*ipo] = acc/INSFAC;    /* init output w/ normalized accumulator */
      acc = 0.0;                   /* reset accumulator for next output pixel */
      INSEG -= OUTSEG;             /* OUTSEG portion of input has been used */
      xi++;                        /* index to next output pixel */
      INSFAC = inpos[xi+1] - inpos[xi]; /* init spatially varying INSFAC */
      OUTSEG = INSFAC;             /* init spatially varying SIZFAC */
    }
  }
  FREE(inpos);
}




/* --------------------------------------------------------------- */

/* NAME
//   warp_image: 2-pass mesh-based single-channel image warping
//
//
// ARGUMENTS
//   in (in)         : input image (single channel, 1 byte per pixel)
//   out (out)       : output image (single channel, 1 byte per pixel)
//   img_width (in)  : width dimension, in pixels, of in and out images
//   img_height (in) : height dimension, in pixels, of in and out images
//   xs (in)         : source mesh x-coordinate values
//   ys (in)         : source mesh y-coordinate values
//   xd (in)         : destination mesh x-coordinate values
//   yd (in)         : destination mesh y-coordinate values
//   mesh_width (in) : x-dimension of meshes
//   mesh_height (in): y-dimension of meshes
//
//
// NOTES
//   Mesh points must not fold over,
//   and border mesh points must stay on border
//
//   Either this routine or the resample routine is responsible for an
//   error where the right vertical line and the bottom horizontal line are
//   entirely black.  This is probably due to a descrepency somewhere
//   between the "nx and ny" of an image, and the last image index in each
//   direction, which is (nx-1, ny-1).  Some day I will track down this bog
//   and fix it.  Meanwhile, remember to crop the final image by 1 pixel in
//   each direction. (6jun97 MJG)
//
//  A Mennucc: I have had a striking idea!!!
//    I have inverted the roles of src & dst!!!
//    so now the resample_array becomes resample_array_inv!!! 
//    which now pulls pixels into dst instead of pushing from src.
//    So the above notes are probably false now. (nov 03)
//
// AUTHOR
//   This code was originally written by George Wolberg, based on Smythe90.
//   Modifications and many bug fixes by Michael J. Gourlay and other
//   authors as noted in the code comments.
//
//
// SEE ALSO
//   See Douglas B. Smythe "A Two-Pass Mesh Warping Algorithm for
//   Object Transformation and Image Interpolation", ILM Technical Memo
//   #1030, Computer Graphics Department, Lucasfilm Ltd., 1990
*/
void
warp_image_inv_old(const PIXEL_TYPE *in, PIXEL_TYPE *out, int img_width, int img_height,
  const double *xs, const double *ys, const double *xd, const double *yd,
  int mesh_width, int mesh_height)
{
  /* "const type *" means "pointer to a constant array of type"
  // not "constant pointer to type"
  */

  int          ai;
  int          xi, yi;
  const PIXEL_TYPE  *src;
  PIXEL_TYPE        *dst;
  PIXEL_TYPE        *tmp;
  const double *x1, *y1, *x2, *y2;
  double       *xrow1, *yrow1, *xrow2, *yrow2;
  double       *map1, *map2;
  double       *indx;
  double       *ts, *ti, *td;


  /* allocate memory for buffers:
  //
  // indx stores indices used to sample splines
  // xrow1, xrow2, yrow2, yrow2 store column data in row order for spline
  // map1, map2 store mapping functions computed in row order in spline
  //
  // Could use alloca instead to avoid the free's at the end of this
  // routine.  alloca might also be faster.  In fact, the original code
  // might have used alloca.  I do not remember why I changed it.
  */

  ai    = MAX(img_height, img_width) + 1;
  indx  =  MY_CALLOC(ai, double);
  xrow1 =  MY_CALLOC(ai, double);
  yrow1 =  MY_CALLOC(ai, double);
  xrow2 =  MY_CALLOC(ai, double);
  yrow2 =  MY_CALLOC(ai, double);
  map1  =  MY_CALLOC(ai, double);
  map2  =  MY_CALLOC(ai, double);


  /* First pass (phase one): create tables ts and ti for x-intercepts
  // of vertical splines in S and I.
  // tables have mesh_width columns of height img_height
  */
  ts = MY_CALLOC(mesh_width*img_height, double);
  ti = MY_CALLOC(mesh_width*img_height, double);
  for(yi=0; yi<img_height; yi++) /* indices used to sample vert spline */
    indx[yi] = yi; 

  for(xi=0; xi<mesh_width; xi++) { /* visit each vertical spline */
    /* store columns as rows for spline */
    for(yi=0; yi<mesh_height; yi++) {
      xrow1[yi] = xs[yi*mesh_width+xi];
      xrow2[yi] = xd[yi*mesh_width+xi];
      yrow1[yi] = ys[yi*mesh_width+xi];
      yrow2[yi] = yd[yi*mesh_width+xi];
    }

    /* scan convert vertical splines of S and I */
    hermite3_array(yrow1, xrow1, mesh_height, indx, map1, img_height);
    /* bug reported 30may96 by Mike Hoefelein: */
    /* hermite3_array(yrow2, xrow2, mesh_height, indx, map2, img_height); */
    hermite3_array(yrow1, xrow2, mesh_height, indx, map2, img_height);

    /* store resampled rows back into columns */
    for(yi=0; yi<img_height; yi++) {
      ts[yi*mesh_width+xi] = map1[yi];
      ti[yi*mesh_width+xi] = map2[yi];
    }
  }

  /* First pass (phase two): warp x using ts and ti.
  // tmp holds intermediate image.
  */
  if((tmp = MY_CALLOC(img_height * img_width, PIXEL_TYPE))==NULL) {
    fprintf(stderr, "warp_image: Bad Alloc: tmp\n"); return;
  }

  for(xi=0; xi < img_width; xi++) /* indices used to sample horiz spline */
    indx[xi]=xi;

  for(yi=0; yi < img_height; yi++) { /* visit each row */
    /* fit spline to x-intercepts; resample over all columns */
    x1 = &ts[yi*mesh_width];
    x2 = &ti[yi*mesh_width];
    hermite3_array(x2, x1, mesh_width, indx, map1, img_width);

    /* resample source row based on map1 */
    src = &in[yi*img_width];
    dst = &tmp[yi*img_width];
    resample_array_inv_bc(map1, src, dst, img_width, 1);
  }

  /* free buffers */
  FREE(ts);
  FREE(ti);

  /* Second pass (phase one): create tables ti and td for y-intercepts
  // of horiz splines in I and D.
  // Tables have mesh_height rows of width img_width
  */
  ti = MY_CALLOC(mesh_height*img_width, double);
  td = MY_CALLOC(mesh_height*img_width, double);

  for(xi=0; xi < img_width; xi++)
    indx[xi] = xi; /* indices used to sample horiz splines */

  for(yi=0; yi < mesh_height; yi++) {

    /* scan convert horizontal splines of I and D */

#if 0
    x1 = &xs[yi*mesh_width];
#endif

    y1 = &ys[yi*mesh_width];
    x2 = &xd[yi*mesh_width];
    y2 = &yd[yi*mesh_width];

    /* The following line is correct: (x2, y1, ...) */
    hermite3_array(x2, y1, mesh_width, indx, &ti[yi*img_width], img_width);
    hermite3_array(x2, y2, mesh_width, indx, &td[yi*img_width], img_width);
  }

  /* Second pass (phase two): warp y using ti and td */
  for(yi=0; yi < img_height; yi++)
    indx[yi] = yi;

  for(xi=0; xi < img_width; xi++) {
    /* store columns as row for hermite3_array */
    for(yi=0; yi<mesh_height; yi++) {
      xrow1[yi] = ti[yi*img_width+xi];
      yrow1[yi] = td[yi*img_width+xi];
    }

    /* fit spline to y-intercepts:  resample over all rows */
    hermite3_array(yrow1, xrow1, mesh_height, indx, map1, img_height);

    /* resample intermediate image column based on map */
    src = &tmp[xi];
    dst = &out[xi];
    resample_array_inv_bc(map1, src, dst, img_height, img_width);
  }

  FREE(tmp);
  FREE(ti);
  FREE(td);
  FREE(indx);
  FREE(xrow1);
  FREE(yrow1);
  FREE(xrow2);
  FREE(yrow2);
  FREE(map1);
  FREE(map2);
}