1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
/* XNECVIEW - a program for visualizing NEC2 input and output data
*
* Copyright (C) 2000-2003, Pieter-Tjerk de Boer -- pa3fwm@amsat.org
*
* Distributed on the conditions of version 2 of the GPL: see the files
* README and COPYING, which accompany this source file.
*
* This module contains code for drawing plots of several quantities
* like impedance, SWR and gain as a function of frequency.
*
*/
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <gdk/gdk.h>
#include "xnecview.h"
int win2sizex,win2sizey; /* size of window in pixels */
int plot2_swr=1; /* show the SWR graph? */
int plot2_maxgain=1; /* show the maxgain and front/back graph? */
int plot2_vgain=0; /* show the vgain graph? */
int plot2_z=0; /* show the impedance graph? */
int plot2_z2=0; /* show the phi(z)/abs(z) graph? */
int plot2_dir=0; /* show the direction-of-maximum-gain graph? */
double r0=R0; /* reference impedance for SWR calculation */
void fixrange1(double *mi, double *ma, int *np)
/* mi and ma point to minimum and maximum value of a range of values to
be plotted, and np to the maximum acceptable number of subdivision.
This function tries to modify the minimum and maximum and the number
of subdivision such that the resulting grid lines are at "round" numbers.
*/
{
double d,e;
double a;
double newmin,newmax;
int i;
int n=*np;
static double acceptable[]={10, 5.0, 2.5, 2.0, 1.0, -1};
if (*ma==*mi) {
if (*mi>0) {*mi=0; *ma=2* *ma;}
else if (*mi<0) {*mi=2* *mi; *ma=0;}
else {*mi=-10; *ma=10;}
}
d=(*ma-*mi)/n;
e=1.0;
while (e<d) e*=10;
while (e>d) e/=10;
a=d/e;
i=0;
while (acceptable[i]>a) i++;
if (acceptable[i]==-1) i--;
i++;
do {
i--;
if (i<0) {
e*=10;
i=0;
while (acceptable[i+1]>0) i++;
}
a=acceptable[i];
d=a*e;
newmin = d*floor(*mi/d);
newmax = d*ceil(*ma/d);
n = (int)((newmax-newmin)/d+0.5);
} while (n>*np);
*np=n;
*mi=newmin;
*ma=newmax;
}
void fixrange2(double *mi1, double *ma1, double *mi2, double *ma2, int *np)
/* like fixrange2(), but for two (vertical) axes simultaneously */
{
static double acceptable[]={100.0, 50.0, 25.0, 20.0, 10.0, 5.0, 2.5, 2.0, 1.0, 0.5, 0.25, 0.2, 0.1, 0.05, 0.025, 0.02, 0.01, -1};
double a,d,e1,e2,s;
int n=*np;
int i1,i2;
int i,j;
int ibest,jbest;
int n1[5],n2[5];
double x1[4],x2[4];
double best;
if (*ma1==*mi1) {
if (*mi1>0) {*mi1=0; *ma1=2* *ma1;}
else if (*mi1<0) {*mi1=2* *mi1; *ma1=0;}
else {*mi1=-10; *ma1=10;}
}
d=(*ma1-*mi1)/n; /* d is the ideal, but usually not acceptable, stepsize, for axis 1 */
*ma1-=0.00001*d; /* prevent rounding errors from causing a boundary of say 1000 to be seen as slightly larger than say 10 steps of 100 each */
*mi1+=0.00001*d; /* idem */
d-=0.00001*d;
e1=1.0;
while (e1<d) e1*=10;
while (e1>d) e1/=10; /* e1 is the appropriate power of 10 to scale the steps, for axis 1 */
a=d/e1;
i1=0;
while (acceptable[i1+1]>=a) i1++; /* i1 is the index in the acceptable[] array of the highest acceptable stepsize, for axis 1 */
for (i=0;i<4;i++) { /* consider this and the next 3 lower stepsizes: */
s = e1*acceptable[i1-i];
n1[i] = ceil(*ma1/s) - floor(*mi1/s) ; /* minimum number of acceptable steps */
x1[i] = (*ma1-*mi1) / s; /* "usage factor": how many of these steps does the data cover? */
}
/* same calculations for axis 2 */
if (*ma2==*mi2) {
if (*mi2>0) {*mi2=0; *ma2=2* *ma2;}
else if (*mi2<0) {*mi2=2* *mi2; *ma2=0;}
else {*mi2=-10; *ma2=10;}
}
d=(*ma2-*mi2)/n;
*ma2-=0.00001*d;
*mi2+=0.00001*d;
d-=0.00001*d;
e2=1.0;
while (e2<d) e2*=10;
while (e2>d) e2/=10;
a=d/e2;
i2=0;
while (acceptable[i2+1]>=a) i2++;
for (i=0;i<4;i++) {
s = e2*acceptable[i2-i];
n2[i] = ceil(*ma2/s) - floor(*mi2/s) ;
x2[i] = (*ma2-*mi2) / s;
}
/* search for best combination: the combination for which the data covers as large a fraction of both axes as possible */
best=0;
ibest=jbest=0;
for (i=0;i<4;i++)
for (j=0;j<4;j++) {
double x;
int n;
n = n1[i];
if (n2[j]>n) n=n2[j];
x = (x1[i]/n) * (x2[j]/n);
if (x>best*1.1 || (x>best && n>=*np)) { best=x; ibest=i; jbest=j; *np=n; }
}
n = *np;
i1-=ibest;
i2-=jbest;
s = e1*acceptable[i1];
*mi1 = s*floor(*mi1/s);
*ma1 = *mi1+n*s;
s = e2*acceptable[i2];
*mi2 = s*floor(*mi2/s);
*ma2 = *mi2+n*s;
}
double minf,maxf;
int xleft, xright;
#define idxOK(idx,ne) (idx>=0 && ( !ONLY_IF_RP(idx) || ne->rp ) && ne->d[idx]>-DBL_MAX)
void freqplot(
int idx1, /* index in neco[].d[] of quantity for left axis */
int idx2, /* index in neco[].d[] of quantity for right axis */
int idx1a, /* index in neco[].d[] of second quantity for left axis (dotted line) */
int idx2a, /* index in neco[].d[] of second quantity for right axis (dotted line) */
char *title1, char *title2, /* titles for left and right */
char *title, /* center title */
GdkColor *color1, GdkColor *color2, /* colours for both curves */
double ybotf, double ytopf /* vertical position; 0...1 = top...bottom of window */
)
{
int ybot, ytop;
int i;
double min1,max1, min2, max2;
NECoutput *ne;
int ntx,nty;
int xx1,xx2,yy1,yy2;
int xx1a,xx2a,yy1a,yy2a;
/* choose the corner points of the graph area */
ybot = ybotf*win2sizey - fontheight;
ytop = ytopf*win2sizey + fontheight;
xleft = 5*fontheight;
xright = win2sizex - 5*fontheight;
/* find the ranges */
minf=maxf=neco[0].f;
min1=min2=DBL_MAX;
max1=max2=-DBL_MAX;
for (i=0, ne=neco; i<numneco; i++, ne++) {
if (ne->f < minf) minf=ne->f;
if (ne->f > maxf) maxf=ne->f;
if (idxOK(idx1,ne)) {
if (ne->d[idx1] < min1) min1=ne->d[idx1];
if (ne->d[idx1] > max1) max1=ne->d[idx1];
}
if (idxOK(idx1a,ne)) {
if (ne->d[idx1a] < min1) min1=ne->d[idx1a];
if (ne->d[idx1a] > max1) max1=ne->d[idx1a];
}
if (idxOK(idx2,ne)) {
if (ne->d[idx2] < min2) min2=ne->d[idx2];
if (ne->d[idx2] > max2) max2=ne->d[idx2];
}
if (idxOK(idx2a,ne)) {
if (ne->d[idx2a] < min2) min2=ne->d[idx2a];
if (ne->d[idx2a] > max2) max2=ne->d[idx2a];
}
}
if (min1>max1) { idx1=-1; idx1a=-1; }
if (min2>max2) { idx2=-1; idx2a=-1; }
/* extend the ranges to have 'round' numbers at each division */
ntx=win2sizex/40;
fixrange1(&minf,&maxf,&ntx);
nty=10;
if (ybot-ytop<10*fontheight) nty=5;
if (ybot-ytop<5*fontheight) nty=2;
if (ybot-ytop<2*fontheight) nty=1;
if (idx1>=0) {
if (idx1==neco_zr) {
if (max1 > 20*r0) max1 = 20*r0;
}
}
if (idx2>=0) {
if (idx2==neco_zi || idx2==neco_zabs) {
if (max2 > 20*r0 && min2 < 20*r0) max2 = 20*r0;
if (min2 < -20*r0 && max2 > -20*r0) min2 = -20*r0;
}
}
if (idx1==neco_swr) { min1=0; if (max1>10) max1=9; else max1-=1; }
if (idx2==neco_swr) { min2=0; if (max2>10) max2=9; else max2-=1; }
if (idx1<0 && idx1a<0) {
if (idx2<0 && idx2a<0) return;
fixrange1(&min2,&max2,&nty);
} else {
if (idx2<0 && idx2a<0) fixrange1(&min1,&max1,&nty);
else fixrange2(&min1,&max1,&min2,&max2,&nty);
}
if (idx1==neco_swr) { min1+=1; max1+=1; }
if (idx2==neco_swr) { min2+=1; max2+=1; }
/* macros for converting from "real" values to screen coordinates */
#define sx(f) (((f)-minf)/(maxf-minf)*(xright-xleft)+xleft)
#define sy1(f) (((f)-min1)/(max1-min1)*(ytop-ybot)+ybot)
#define sy2(f) (((f)-min2)/(max2-min2)*(ytop-ybot)+ybot)
SetLineAttributes(0, GDK_LINE_SOLID, GDK_CAP_ROUND, GDK_JOIN_ROUND);
/* vertical grid lines and associated labels */
for (i=0; i<=ntx; i++) {
double f;
int x;
char s[20];
f=minf+(maxf-minf)*((double)i)/ntx;
x=sx(f);
if (i>0 && i<ntx) {
SetForeground(&c_scale);
DrawLine(x,ybot,x,ytop);
}
sprintf(s,"%g",f);
SetForeground(&c_axis);
DrawString(x,ybot+1,s,0.5,1);
}
if (idx1<0) { min1=1; max1=2; }
/* horizontal grid lines and associated labels */
for (i=0; i<=nty; i++) {
double f;
int y;
char s[20];
f=min1+(max1-min1)*((double)i)/nty;
if (fabs(f/(max1-min1))<0.1/nty) f=0;
y=sy1(f);
if (i>0 && i<nty) {
SetForeground(&c_scale);
DrawLine(xleft,y,xright,y);
}
if (idx1>=0) {
sprintf(s,"%g ",f);
SetForeground(color1);
DrawString(xleft,y,s,1,0.5);
}
if (idx2>=0) {
f=min2+(max2-min2)*((double)i)/nty;
if (fabs(f/(max2-min2))<0.1/nty) f=0;
y=sy2(f);
sprintf(s," %g",f);
SetForeground(color2);
DrawString(xright,y,s,0,0.5);
}
}
SetForeground(&c_axis);
/* border around the graph */
DrawLine(xleft,ybot,xright,ybot);
DrawLine(xleft,ytop,xright,ytop);
DrawLine(xleft,ybot,xleft,ytop);
DrawLine(xright,ybot,xright,ytop);
/* title(s) */
if (title) {
SetForeground(&c_axis);
DrawString((xleft+xright)/2, ytop-1, title, 0.5,0);
}
if (title1) {
SetForeground(color1);
DrawString(xleft, ytop-1, title1, 0.5,0);
}
if (title2) {
SetForeground(color2);
DrawString(xright, ytop-1, title2, 0.5,0);
}
/* the actual data points and connecting lines */
SetClipRectangle(xleft-2,ytop,xright+2,ybot);
xx1=xx2=yy1=yy2=-1;
xx1a=xx2a=yy1a=yy2a=-1;
for (i=0, ne=neco; i<numneco; i++, ne++) {
int x,y;
x=sx(ne->f);
if (idx1a>=0 || idx2a>=0) SetLineAttributes(0, GDK_LINE_ON_OFF_DASH, GDK_CAP_ROUND, GDK_JOIN_ROUND);
if (idxOK(idx1a,ne)) {
y = sy1(ne->d[idx1a]);
SetForeground(color1);
if (numneco < win2sizex / 4) {
DrawLine(x-2,y-2,x+2,y-2);
DrawLine(x-2,y+2,x+2,y+2);
DrawLine(x-2,y-2,x-2,y+2);
DrawLine(x+2,y-2,x+2,y+2);
}
if (xx1a!=-1) DrawLine(xx1a,yy1a,x,y);
xx1a=x; yy1a=y;
}
if (idxOK(idx2a,ne)) {
y = sy2(ne->d[idx2a]);
SetForeground(color2);
if (numneco < win2sizex / 4) {
DrawLine(x-3,y,x,y-3);
DrawLine(x-3,y,x,y+3);
DrawLine(x+3,y,x,y-3);
DrawLine(x+3,y,x,y+3);
}
if (xx2a!=-1) DrawLine(xx2a,yy2a,x,y);
xx2a=x; yy2a=y;
}
if (idx1a>=0 || idx2a>=0) SetLineAttributes(0, GDK_LINE_SOLID, GDK_CAP_ROUND, GDK_JOIN_ROUND);
if (idxOK(idx1,ne)) {
y = sy1(ne->d[idx1]);
SetForeground(color1);
if (numneco < win2sizex / 4) {
DrawLine(x-2,y-2,x+2,y-2);
DrawLine(x-2,y+2,x+2,y+2);
DrawLine(x-2,y-2,x-2,y+2);
DrawLine(x+2,y-2,x+2,y+2);
}
if (xx1!=-1) DrawLine(xx1,yy1,x,y);
xx1=x; yy1=y;
}
if (idxOK(idx2,ne)) {
y = sy2(ne->d[idx2]);
SetForeground(color2);
if (numneco < win2sizex / 4) {
DrawLine(x-3,y,x,y-3);
DrawLine(x-3,y,x,y+3);
DrawLine(x+3,y,x,y-3);
DrawLine(x+3,y,x,y+3);
}
if (xx2!=-1) DrawLine(xx2,yy2,x,y);
xx2=x; yy2=y;
}
}
SetClipRectangle(0,0,win2sizex,win2sizey);
}
double xfreq(int x)
{
return ((double)x-xleft)/(xright-xleft)*(maxf-minf)+minf;
}
int freqx(double f)
{
return sx(f);
}
int freqindex(double f)
{
double d,dbest;
int i,ibest;
ibest=-1;
dbest=DBL_MAX;
for (i=0;i<numneco;i++) {
if ( !neco[i].rp && !neco[i].cu && !neco[i].nf ) continue;
d=fabs(f-neco[i].f);
if (d<dbest) {
ibest=i;
dbest=d;
}
}
return ibest;
}
void draw_all2(int onlyvgain)
{
int n;
double size,step,y;
n = plot2_swr+plot2_z+plot2_z2+plot2_maxgain+plot2_dir+plot2_vgain;
size = 1.0/(n+(n-1)*0.05);
step = 1.05*size;
y = 1.0;
if (!onlyvgain) ClearWindow();
if (plot2_z2) {
if (!onlyvgain) freqplot(neco_zphi,neco_zabs,-1,-1,"phi(Z)","|Z|","impedance",&c_exci,&c_load,y,y-size);
y-=step;
}
if (plot2_z) {
if (!onlyvgain) freqplot(neco_zr,neco_zi,-1,-1,"real","imag","impedance",&c_exci,&c_load,y,y-size);
y-=step;
}
if (plot2_swr) {
if (!onlyvgain) freqplot(neco_swr,-1,-1,-1,"SWR",NULL,NULL,&c_wire,NULL,y,y-size);
y-=step;
}
if (plot2_dir) {
if (!onlyvgain) {
if (polarization==POLnone || polarization==POLcolour) freqplot(neco_phi,neco_theta,-1,-1,"phi","theta","direction of maximum gain",&c_exci,&c_load,y,y-size);
else freqplot(Neco_polphi+Neco_gsize*polarization,
Neco_poltheta+Neco_gsize*polarization,
neco_phi,neco_theta,"phi","theta","direction of maximum gain",&c_exci,&c_load,y,y-size);
}
y-=step;
}
if (plot2_maxgain) {
if (!onlyvgain) {
if (polarization==POLnone || polarization==POLcolour) freqplot(neco_maxgain,neco_fb,-1,-1,"gain","f/b","in direction of maximum gain",&c_gain,&c_surf,y,y-size);
else freqplot(Neco_polgain+Neco_gsize*polarization,
Neco_polfb1+Neco_gsize*polarization,
neco_maxgain,
Neco_polfb2+Neco_gsize*polarization,
"gain","f/b","in direction of maximum gain",&c_gain,&c_surf,y,y-size);
}
y-=step;
}
if (plot2_vgain) {
if (onlyvgain) ClearRectangle(0,(y-size)*win2sizey,win2sizex,y*win2sizey);
if (polarization==POLnone || polarization==POLcolour) freqplot(neco_vgain,neco_vfb,-1,-1,"gain","f/b","in direction toward viewer",&c_gain,&c_surf,y,y-size);
else freqplot(neco_vgain2,neco_vfb,neco_vgain,neco_vfb2,"gain","f/b","in direction toward viewer",&c_gain,&c_surf,y,y-size);
y-=step;
}
out->Complete();
}
|