1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
/*
* ntp_fp.h - definitions for NTP fixed point arithmetic
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include "ntp_types.h"
/*
* NTP uses two fixed point formats. The first (l_fp) is the "long" format
* and is 64 bits long with the decimal between bits 31 and 32. This
* is used for time stamps in the NTP packet header (in network byte
* order) and for internal computations of offsets (in local host byte
* order). We use the same structure for both signed and unsigned values,
* which is a big hack but saves rewriting all the operators twice. Just
* to confuse this, we also sometimes just carry the fractional part in
* calculations, in both signed and unsigned forms. Anyway, an l_fp looks
* like:
*
* 0 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Integral Part |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Fractional Part |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*/
typedef struct {
union {
u_int32 Xl_ui;
int32 Xl_i;
} Ul_i;
union {
u_int32 Xl_uf;
int32 Xl_f;
} Ul_f;
} l_fp;
#define l_ui Ul_i.Xl_ui /* unsigned integral part */
#define l_i Ul_i.Xl_i /* signed integral part */
#define l_uf Ul_f.Xl_uf /* unsigned fractional part */
#define l_f Ul_f.Xl_f /* signed fractional part */
/*
* Fractional precision (of an l_fp) is actually the number of
* bits in a long.
*/
#define FRACTION_PREC (32)
/*
* The second fixed point format is 32 bits, with the decimal between
* bits 15 and 16. There is a signed version (s_fp) and an unsigned
* version (u_fp). This is used to represent synchronizing distance
* and synchronizing dispersion in the NTP packet header (again, in
* network byte order) and internally to hold both distance and
* dispersion values (in local byte order). In network byte order
* it looks like:
*
* 0 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Integer Part | Fraction Part |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*/
typedef int32 s_fp;
typedef u_int32 u_fp;
/*
* A unit second in fp format. Actually 2**(half_the_bits_in_a_long)
*/
#define FP_SECOND (0x10000)
/*
* Byte order conversions
*/
#define HTONS_FP(x) (htonl(x))
#define HTONL_FP(h, n) do { (n)->l_ui = htonl((h)->l_ui); \
(n)->l_uf = htonl((h)->l_uf); } while (0)
#define NTOHS_FP(x) (ntohl(x))
#define NTOHL_FP(n, h) do { (h)->l_ui = ntohl((n)->l_ui); \
(h)->l_uf = ntohl((n)->l_uf); } while (0)
#define NTOHL_MFP(ni, nf, hi, hf) \
do { (hi) = ntohl(ni); (hf) = ntohl(nf); } while (0)
#define HTONL_MFP(hi, hf, ni, nf) \
do { (ni) = ntohl(hi); (nf) = ntohl(hf); } while (0)
/* funny ones. Converts ts fractions to net order ts */
#define HTONL_UF(uf, nts) \
do { (nts)->l_ui = 0; (nts)->l_uf = htonl(uf); } while (0)
#define HTONL_F(f, nts) do { (nts)->l_uf = htonl(f); \
if ((f) & 0x80000000) \
(nts)->l_i = -1; \
else \
(nts)->l_i = 0; \
} while (0)
/*
* Conversions between the two fixed point types
*/
#define MFPTOFP(x_i, x_f) (((x_i) >= 0x00010000) ? 0x7fffffff : \
(((x_i) <= -0x00010000) ? 0x80000000 : \
(((x_i)<<16) | (((x_f)>>16)&0xffff))))
#define LFPTOFP(v) MFPTOFP((v)->l_i, (v)->l_f)
#define UFPTOLFP(x, v) ((v)->l_ui = (u_fp)(x)>>16, (v)->l_uf = (x)<<16)
#define FPTOLFP(x, v) (UFPTOLFP((x), (v)), (x) < 0 ? (v)->l_ui -= 0x10000 : 0)
#define MAXLFP(v) ((v)->l_ui = 0x7fffffff, (v)->l_uf = 0xffffffff)
#define MINLFP(v) ((v)->l_ui = 0x80000000, (v)->l_uf = 0)
/*
* Primitive operations on long fixed point values. If these are
* reminiscent of assembler op codes it's only because some may
* be replaced by inline assembler for particular machines someday.
* These are the (kind of inefficient) run-anywhere versions.
*/
#define M_NEG(v_i, v_f) /* v = -v */ \
do { \
if ((v_f) == 0) \
(v_i) = -((s_fp)(v_i)); \
else { \
(v_f) = -((s_fp)(v_f)); \
(v_i) = ~(v_i); \
} \
} while(0)
#define M_NEGM(r_i, r_f, a_i, a_f) /* r = -a */ \
do { \
if ((a_f) == 0) { \
(r_f) = 0; \
(r_i) = -(a_i); \
} else { \
(r_f) = -(a_f); \
(r_i) = ~(a_i); \
} \
} while(0)
#define M_ADD(r_i, r_f, a_i, a_f) /* r += a */ \
do { \
register u_int32 lo_tmp; \
register u_int32 hi_tmp; \
\
lo_tmp = ((r_f) & 0xffff) + ((a_f) & 0xffff); \
hi_tmp = (((r_f) >> 16) & 0xffff) + (((a_f) >> 16) & 0xffff); \
if (lo_tmp & 0x10000) \
hi_tmp++; \
(r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
\
(r_i) += (a_i); \
if (hi_tmp & 0x10000) \
(r_i)++; \
} while (0)
#define M_ADD3(r_ovr, r_i, r_f, a_ovr, a_i, a_f) /* r += a, three word */ \
do { \
register u_int32 lo_tmp; \
register u_int32 hi_tmp; \
\
lo_tmp = ((r_f) & 0xffff) + ((a_f) & 0xffff); \
hi_tmp = (((r_f) >> 16) & 0xffff) + (((a_f) >> 16) & 0xffff); \
if (lo_tmp & 0x10000) \
hi_tmp++; \
(r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
\
lo_tmp = ((r_i) & 0xffff) + ((a_i) & 0xffff); \
if (hi_tmp & 0x10000) \
lo_tmp++; \
hi_tmp = (((r_i) >> 16) & 0xffff) + (((a_i) >> 16) & 0xffff); \
if (lo_tmp & 0x10000) \
hi_tmp++; \
(r_i) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
\
(r_ovr) += (a_ovr); \
if (hi_tmp & 0x10000) \
(r_ovr)++; \
} while (0)
#define M_SUB(r_i, r_f, a_i, a_f) /* r -= a */ \
do { \
register u_int32 lo_tmp; \
register u_int32 hi_tmp; \
\
if ((a_f) == 0) { \
(r_i) -= (a_i); \
} else { \
lo_tmp = ((r_f) & 0xffff) + ((-((s_fp)(a_f))) & 0xffff); \
hi_tmp = (((r_f) >> 16) & 0xffff) \
+ (((-((s_fp)(a_f))) >> 16) & 0xffff); \
if (lo_tmp & 0x10000) \
hi_tmp++; \
(r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
\
(r_i) += ~(a_i); \
if (hi_tmp & 0x10000) \
(r_i)++; \
} \
} while (0)
#define M_RSHIFTU(v_i, v_f) /* v >>= 1, v is unsigned */ \
do { \
(v_f) = (u_int32)(v_f) >> 1; \
if ((v_i) & 01) \
(v_f) |= 0x80000000; \
(v_i) = (u_int32)(v_i) >> 1; \
} while (0)
#define M_RSHIFT(v_i, v_f) /* v >>= 1, v is signed */ \
do { \
(v_f) = (u_int32)(v_f) >> 1; \
if ((v_i) & 01) \
(v_f) |= 0x80000000; \
if ((v_i) & 0x80000000) \
(v_i) = ((v_i) >> 1) | 0x80000000; \
else \
(v_i) = (v_i) >> 1; \
} while (0)
#define M_LSHIFT(v_i, v_f) /* v <<= 1 */ \
do { \
(v_i) <<= 1; \
if ((v_f) & 0x80000000) \
(v_i) |= 0x1; \
(v_f) <<= 1; \
} while (0)
#define M_LSHIFT3(v_ovr, v_i, v_f) /* v <<= 1, with overflow */ \
do { \
(v_ovr) <<= 1; \
if ((v_i) & 0x80000000) \
(v_ovr) |= 0x1; \
(v_i) <<= 1; \
if ((v_f) & 0x80000000) \
(v_i) |= 0x1; \
(v_f) <<= 1; \
} while (0)
#define M_ADDUF(r_i, r_f, uf) /* r += uf, uf is u_int32 fraction */ \
M_ADD((r_i), (r_f), 0, (uf)) /* let optimizer worry about it */
#define M_SUBUF(r_i, r_f, uf) /* r -= uf, uf is u_int32 fraction */ \
M_SUB((r_i), (r_f), 0, (uf)) /* let optimizer worry about it */
#define M_ADDF(r_i, r_f, f) /* r += f, f is a int32 fraction */ \
do { \
if ((f) > 0) \
M_ADD((r_i), (r_f), 0, (f)); \
else if ((f) < 0) \
M_ADD((r_i), (r_f), (-1), (f));\
} while(0)
#define M_ISNEG(v_i, v_f) /* v < 0 */ \
(((v_i) & 0x80000000) != 0)
#define M_ISHIS(a_i, a_f, b_i, b_f) /* a >= b unsigned */ \
(((u_int32)(a_i)) > ((u_int32)(b_i)) || \
((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f))))
#define M_ISGEQ(a_i, a_f, b_i, b_f) /* a >= b signed */ \
(((int32)(a_i)) > ((int32)(b_i)) || \
((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f))))
#define M_ISEQU(a_i, a_f, b_i, b_f) /* a == b unsigned */ \
((a_i) == (b_i) && (a_f) == (b_f))
/*
* Operations on the long fp format
*/
#define L_ADD(r, a) M_ADD((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
#define L_SUB(r, a) M_SUB((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
#define L_NEG(v) M_NEG((v)->l_ui, (v)->l_uf)
#define L_ADDUF(r, uf) M_ADDUF((r)->l_ui, (r)->l_uf, (uf))
#define L_SUBUF(r, uf) M_SUBUF((r)->l_ui, (r)->l_uf, (uf))
#define L_ADDF(r, f) M_ADDF((r)->l_ui, (r)->l_uf, (f))
#define L_RSHIFT(v) M_RSHIFT((v)->l_i, (v)->l_uf)
#define L_RSHIFTU(v) M_RSHIFT((v)->l_ui, (v)->l_uf)
#define L_LSHIFT(v) M_LSHIFT((v)->l_ui, (v)->l_uf)
#define L_CLR(v) ((v)->l_ui = (v)->l_uf = 0)
#define L_ISNEG(v) (((v)->l_ui & 0x80000000) != 0)
#define L_ISZERO(v) ((v)->l_ui == 0 && (v)->l_uf == 0)
#define L_ISHIS(a, b) ((a)->l_ui > (b)->l_ui || \
((a)->l_ui == (b)->l_ui && (a)->l_uf >= (b)->l_uf))
#define L_ISGEQ(a, b) ((a)->l_i > (b)->l_i || \
((a)->l_i == (b)->l_i && (a)->l_uf >= (b)->l_uf))
#define L_ISEQU(a, b) M_ISEQU((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
extern char * dofptoa P((u_fp, int, int, int));
extern char * dolfptoa P((u_long, u_long, int, int, int));
extern int atolfp P((const char *, l_fp *));
extern int buftvtots P((const char *, l_fp *));
extern char * fptoa P((s_fp, int));
extern char * fptoms P((s_fp, int));
extern char * fptoms P((s_fp, int));
extern int hextolfp P((const char *, l_fp *));
extern int mstolfp P((const char *, l_fp *));
extern char * prettydate P((l_fp *));
extern char * uglydate P((l_fp *));
extern void get_systime P((l_fp *));
extern int step_systime P((l_fp *));
extern int step_systime_real P((l_fp *));
extern int adj_systime P((l_fp *));
#define lfptoa(_fpv, _ndec) mfptoa((_fpv)->l_ui, (_fpv)->l_uf, (_ndec))
#define lfptoms(_fpv, _ndec) mfptoms((_fpv)->l_ui, (_fpv)->l_uf, (_ndec))
#define ntoa(_sin) numtoa((_sin)->sin_addr.s_addr)
#define ntohost(_sin) numtohost((_sin)->sin_addr.s_addr)
#define ufptoa(_fpv, _ndec) dofptoa((_fpv), 0, (_ndec), 0)
#define ufptoms(_fpv, _ndec) dofptoa((_fpv), 0, (_ndec), 1)
#define ulfptoa(_fpv, _ndec) dolfptoa((_fpv)->l_ui, (_fpv)->l_uf, 0, (_ndec), 0)
#define ulfptoms(_fpv, _ndec) dolfptoa((_fpv)->l_ui, (_fpv)->l_uf, 0, (_ndec), 1)
#define umfptoa(_fpi, _fpf, _ndec) dolfptoa((_fpi), (_fpf), 0, (_ndec), 0)
|