File: texture.c

package info (click to toggle)
xpaint 2.5.1-4
  • links: PTS
  • area: main
  • in suites: potato
  • size: 1,448 kB
  • ctags: 2,478
  • sloc: ansic: 25,980; makefile: 36; sh: 23
file content (593 lines) | stat: -rw-r--r-- 14,498 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/*
 * This file is part of XPaint.
 *
 * Copyright 1996 by Torsten Martinsen
 * Copyright 1994 by Jer Johnson
 *
 * This is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <X11/X.h>
#include <X11/Intrinsic.h>
#include <X11/Xlib.h>

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

#include "xpaint.h"
#include "misc.h"
#include "image.h"

#if FEATURE_FRACTAL

static void draw_grid(int x, int y, unsigned char col, unsigned char *grid);
static void subdiv(int x1, int y1, int x2, int y2, unsigned char *grid);
static void adjust(int x1, int y1, int x, int y, int x2, int y2,
		   unsigned char *grid);
static void fourn(float data[], int nn[], int ndim, int isign);
static void spectralsynth(float **x, unsigned int n, double h);

static int number, numcolors, width, height;

/*
 * draw_plasma() and friends are stolen from Xtacy, written by Jer Johnson
 * (mpython@gnu.ai.mit.edu) who says that his work in turn is based on OOZE.C,
 * written by Jeff Clough.
 */
Image *
draw_plasma(int w, int h)
{
    int i, n;
    unsigned char *grid;
    Image *output;
    unsigned char *op;


    /* customizable parameters */
    numcolors = 100;
    number = 10;

    width = w;

    n = numcolors / 5;
    numcolors = n * 5;
    output = ImageNewCmap(w, h, numcolors);
    grid = output->data;
    memset(grid, 0, w * h);

    /*
     * Make points at (0,0) (0, h-1) (w-1, 0) (w-1, h-1) of random colors
     */
    draw_grid(0, 0, RANDOMI2(0, numcolors-1), grid);
    draw_grid(w - 1, 0, RANDOMI2(0, numcolors-1), grid);
    draw_grid(0, h - 1, RANDOMI2(0, numcolors-1), grid);
    draw_grid(w - 1, h - 1, RANDOMI2(0, numcolors-1), grid);

    subdiv(0, 0, w - 1, h - 1, grid);

    /* Build the colour map */
    op = output->cmapData;
    for (i = 0; i < n; ++i) {
	*op++ = 255;
	*op++ = 255 * i / n;
	*op++ = 0;
    }
    for (i = 0; i < n; ++i) {
	*op++ = 255 - 255 * i / n;
	*op++ = 255;
	*op++ = 0;
    }
    for (i = 0; i < n; ++i) {
	*op++ = 0;
	*op++ = 255;
	*op++ = 255 * i / n;
    }
    for (i = 0; i < n; ++i) {
	*op++ = 255 * i / n;
	*op++ = 0;
	*op++ = 255;
    }
    for (i = 0; i < n; ++i) {
	*op++ = 255;
	*op++ = 0;
	*op++ = 255 - 255 * i / n;
    }
#if 0
    op = output->cmapData;
    for (i = 0; i < 5 * n; ++i) {
	printf("%d: %d %d %d\n", i, op[0], op[1], op[2]);
	op += 3;
    }
#endif

    return output;
}

static void 
draw_grid(int x, int y, unsigned char col, unsigned char *grid)
{
    grid[x + y * width] = col;
}

static void 
subdiv(int x1, int y1, int x2, int y2, unsigned char *grid)
{
    int x, y;

    if ((x2 - x1 < 2) && (y2 - y1 < 2))
	return;

    x = (x1 + x2) / 2;
    y = (y1 + y2) / 2;
    adjust(x1, y1, x, y1, x2, y1, grid);
    adjust(x2, y1, x2, y, x2, y2, grid);
    adjust(x1, y2, x, y2, x2, y2, grid);
    adjust(x1, y1, x1, y, x1, y2, grid);

    if (grid[x + y * width] == 0) {
	unsigned char spooge;

	spooge = ((int) grid[x1 + y1 * width] +
		  (int) grid[x1 + y2 * width] +
		  (int) grid[x2 + y1 * width] +
		  (int) grid[x2 + y2 * width]) / 4;
	draw_grid(x, y, spooge, grid);
    }
    subdiv(x1, y1, x, y, grid);
    subdiv(x, y1, x2, y, grid);
    subdiv(x1, y, x, y2, grid);
    subdiv(x, y, x2, y2, grid);
}

static void 
adjust(int x1, int y1, int x, int y, int x2, int y2, unsigned char *grid)
{
    int c, d, spoo;
    int clr1, clr2, clr3, clr4, horz, vert;


    if (grid[x + y * width] != 0)
	return;

    clr1 = grid[x1 + y1 * width];
    clr2 = grid[x2 + y2 * width];
    clr3 = grid[x1 + y2 * width];
    clr4 = grid[x2 + y1 * width];
    horz = x2 - x1;
    vert = y2 - y1;
    d = hypot(horz, vert);

#if 1				/* 0 for band effect */
    if ((spoo = RANDOMI2(0, 100)) > number) {
	if (spoo % 2 == 1)
	    c = (((clr1 + clr2) / 2) + ((int) RANDOMI2(0, d))) % numcolors;
	else
	    c = (((clr1 + clr2) / 2) - ((int) RANDOMI2(0, d))) % numcolors;
    } else
#endif
	c = (clr1 + clr2 + clr3 + clr4) / 4;
    if (c < 0)
	c = -c;
    else if (c == 0)
	c = 1;
    draw_grid(x, y, c, grid);
}

/*
 * Fractal landscape generator from ppmforge.c,
 * written by John Walker (kelvin@Autodesk.com).
 */

#define Real(v, x, y)  v[1 + (((x) * meshsize) + (y)) * 2]
#define Imag(v, x, y)  v[2 + (((x) * meshsize) + (y)) * 2]

#define ELEMENTS(array) (sizeof(array)/sizeof((array)[0]))

/* customize: */
static double fracdim = 1.8;	/* Fractal dimension - ]0,3] */
static double powscale = 1.0;	/* Power law scaling exponent - ]0,3] */
static int meshsize = 256;	/* FFT mesh size - generally >= max(w,h),
				   but small numbers can give special effects */
/* colours */

static unsigned char pgnd[][3] =
{
    {206, 205, 0},
    {208, 207, 0},
    {211, 208, 0},
    {214, 208, 0},
    {217, 208, 0},
    {220, 208, 0},
    {222, 207, 0},
    {225, 205, 0},
    {227, 204, 0},
    {229, 202, 0},
    {231, 199, 0},
    {232, 197, 0},
    {233, 194, 0},
    {234, 191, 0},
    {234, 188, 0},
    {233, 185, 0},
    {232, 183, 0},
    {231, 180, 0},
    {229, 178, 0},
    {227, 176, 0},
    {225, 174, 0},
    {223, 172, 0},
    {221, 170, 0},
    {219, 168, 0},
    {216, 166, 0},
    {214, 164, 0},
    {212, 162, 0},
    {210, 161, 0},
    {207, 159, 0},
    {205, 157, 0},
    {203, 156, 0},
    {200, 154, 0},
    {198, 152, 0},
    {195, 151, 0},
    {193, 149, 0},
    {190, 148, 0},
    {188, 147, 0},
    {185, 145, 0},
    {183, 144, 0},
    {180, 143, 0},
    {177, 141, 0},
    {175, 140, 0},
    {172, 139, 0},
    {169, 138, 0},
    {167, 137, 0},
    {164, 136, 0},
    {161, 135, 0},
    {158, 134, 0},
    {156, 133, 0},
    {153, 132, 0},
    {150, 132, 0},
    {147, 131, 0},
    {145, 130, 0},
    {142, 130, 0},
    {139, 129, 0},
    {136, 128, 0},
    {133, 128, 0},
    {130, 127, 0},
    {127, 127, 0},
    {125, 127, 0},
    {122, 127, 0},
    {119, 127, 0},
    {116, 127, 0},
    {113, 127, 0},
    {110, 128, 0},
    {107, 128, 0},
    {104, 128, 0},
    {102, 127, 0},
    {99, 126, 0},
    {97, 124, 0},
    {95, 122, 0},
    {93, 120, 0},
    {92, 117, 0},
    {92, 114, 0},
    {92, 111, 0},
    {93, 108, 0},
    {94, 106, 0},
    {96, 104, 0},
    {98, 102, 0},
    {100, 100, 0},
    {103, 99, 0},
    {106, 99, 0},
    {109, 99, 0},
    {111, 100, 0},
    {114, 101, 0},
    {117, 102, 0},
    {120, 103, 0},
    {123, 102, 0},
    {125, 102, 0},
    {128, 100, 0},
    {130, 98, 0},
    {132, 96, 0},
    {133, 94, 0},
    {134, 91, 0},
    {134, 88, 0},
    {134, 85, 0},
    {133, 82, 0},
    {131, 80, 0},
    {129, 78, 0}
};


/*      FOURN  --  Multi-dimensional fast Fourier transform

   Called with arguments:

   data       A  one-dimensional  array  of  floats  (NOTE!!!   NOT
   DOUBLES!!), indexed from one (NOTE!!!   NOT  ZERO!!),
   containing  pairs of numbers representing the complex
   valued samples.  The Fourier transformed results     are
   returned in the same array.

   nn         An  array specifying the edge size in each dimension.
   THIS ARRAY IS INDEXED FROM  ONE,     AND  ALL  THE  EDGE
   SIZES MUST BE POWERS OF TWO!!!

   ndim       Number of dimensions of FFT to perform.  Set to 2 for
   two dimensional FFT.

   isign      If 1, a Fourier transform is done; if -1 the  inverse
   transformation is performed.

   This  function  is essentially as given in Press et al., "Numerical
   Recipes In C", Section 12.11, pp.  467-470.
 */

static void 
fourn(float data[], int nn[], int ndim, int isign)
{
    register int i1, i2, i3;
    int i2rev, i3rev, ip1, ip2, ip3, ifp1, ifp2;
    int ibit, idim, k1, k2, n, nprev, nrem, ntot;
    float tempi, tempr;
    double theta, wi, wpi, wpr, wr, wtemp;

#define SWAP(a,b) tempr=(a); (a) = (b); (b) = tempr

    ntot = 1;
    for (idim = 1; idim <= ndim; idim++)
	ntot *= nn[idim];
    nprev = 1;
    for (idim = ndim; idim >= 1; idim--) {
	n = nn[idim];
	nrem = ntot / (n * nprev);
	ip1 = nprev << 1;
	ip2 = ip1 * n;
	ip3 = ip2 * nrem;
	i2rev = 1;
	for (i2 = 1; i2 <= ip2; i2 += ip1) {
	    if (i2 < i2rev) {
		for (i1 = i2; i1 <= i2 + ip1 - 2; i1 += 2) {
		    for (i3 = i1; i3 <= ip3; i3 += ip2) {
			i3rev = i2rev + i3 - i2;
			SWAP(data[i3], data[i3rev]);
			SWAP(data[i3 + 1], data[i3rev + 1]);
		    }
		}
	    }
	    ibit = ip2 >> 1;
	    while (ibit >= ip1 && i2rev > ibit) {
		i2rev -= ibit;
		ibit >>= 1;
	    }
	    i2rev += ibit;
	}
	ifp1 = ip1;
	while (ifp1 < ip2) {
	    ifp2 = ifp1 << 1;
	    theta = isign * (M_PI * 2) / (ifp2 / ip1);
	    wtemp = sin(0.5 * theta);
	    wpr = -2.0 * wtemp * wtemp;
	    wpi = sin(theta);
	    wr = 1.0;
	    wi = 0.0;
	    for (i3 = 1; i3 <= ifp1; i3 += ip1) {
		for (i1 = i3; i1 <= i3 + ip1 - 2; i1 += 2) {
		    for (i2 = i1; i2 <= ip3; i2 += ifp2) {
			k1 = i2;
			k2 = k1 + ifp1;
			tempr = wr * data[k2] - wi * data[k2 + 1];
			tempi = wr * data[k2 + 1] + wi * data[k2];
			data[k2] = data[k1] - tempr;
			data[k2 + 1] = data[k1 + 1] - tempi;
			data[k1] += tempr;
			data[k1 + 1] += tempi;
		    }
		}
		wr = (wtemp = wr) * wpr - wi * wpi + wr;
		wi = wi * wpr + wtemp * wpi + wi;
	    }
	    ifp1 = ifp2;
	}
	nprev *= n;
    }
}
#undef SWAP

/*
 * SPECTRALSYNTH -- Spectrally synthesised fractal motion in two dimensions.
 */
static void 
spectralsynth(float **x, unsigned int n, double h)
{
    unsigned bl;
    int i, j, i0, j0, nsize[3];
    double rad, phase, rcos, rsin;
    float *a;

    bl = ((((unsigned long) n) * n) + 1) * 2 * sizeof(float);
    a = (float *) XtCalloc(bl, 1);
    *x = a;

    for (i = 0; i <= n / 2; i++) {
	for (j = 0; j <= n / 2; j++) {
	    phase = 2 * M_PI * (RANDOMI() & 0x7FFF) / 32767.0;
	    if (i != 0 || j != 0) {
		rad = pow((double) (i * i + j * j), -(h + 1) / 2) * gauss();
	    } else {
		rad = 0;
	    }
	    rcos = rad * cos(phase);
	    rsin = rad * sin(phase);
	    Real(a, i, j) = rcos;
	    Imag(a, i, j) = rsin;
	    i0 = (i == 0) ? 0 : n - i;
	    j0 = (j == 0) ? 0 : n - j;
	    Real(a, i0, j0) = rcos;
	    Imag(a, i0, j0) = -rsin;
	}
    }
    Imag(a, n / 2, 0) = 0;
    Imag(a, 0, n / 2) = 0;
    Imag(a, n / 2, n / 2) = 0;
    for (i = 1; i <= n / 2 - 1; i++) {
	for (j = 1; j <= n / 2 - 1; j++) {
	    phase = 2 * M_PI * (RANDOMI() & 0x7FFF) / 32767.0;
	    rad = pow((double) (i * i + j * j), -(h + 1) / 2) * gauss();
	    rcos = rad * cos(phase);
	    rsin = rad * sin(phase);
	    Real(a, i, n - j) = rcos;
	    Imag(a, i, n - j) = rsin;
	    Real(a, n - i, j) = rcos;
	    Imag(a, n - i, j) = -rsin;
	}
    }

    nsize[0] = 0;
    nsize[1] = nsize[2] = n;	/* Dimension of frequency domain array */
    fourn(a, nsize, 2, -1);	/* Take inverse 2D Fourier transform */
}

Image *
draw_landscape(int w, int h, int clouds)
{
    float *a;
    double rmin = HUGE_VAL, rmax = -HUGE_VAL, rmean, rrange;
    Image *output = ImageNew(w, h);
    unsigned char *op = output->data;
    int x, y, i, j;
    unsigned char *cp, *ap;
    double *u, *u1;
    unsigned int *bxf, *bxc;

    width = w;
    height = h;

    spectralsynth(&a, meshsize, 3.0 - fracdim);

    /* Apply power law scaling if non-unity scale is requested. */

    if (powscale != 1.0)
	for (i = 0; i < meshsize; i++)
	    for (j = 0; j < meshsize; j++) {
		double r = Real(a, i, j);

		if (r > 0)
		    Real(a, i, j) = pow(r, powscale);
	    }
    /* Compute extrema for autoscaling. */
    for (i = 0; i < meshsize; i++)
	for (j = 0; j < meshsize; j++) {
	    double r = Real(a, i, j);

	    rmin = MIN(rmin, r);
	    rmax = MAX(rmax, r);
	}

    rmean = (rmin + rmax) / 2;
    rrange = (rmax - rmin) / 2;
    for (i = 0; i < meshsize; i++)
	for (j = 0; j < meshsize; j++)
	    Real(a, i, j) = (Real(a, i, j) - rmean) / rrange;

    u = (double *) XtMalloc((unsigned int) (width * sizeof(double)));
    u1 = (double *) XtMalloc((unsigned int) (width * sizeof(double)));
    bxf = (unsigned int *) XtMalloc((unsigned int) width *
				    sizeof(unsigned int));
    bxc = (unsigned int *) XtMalloc((unsigned int) width *
				    sizeof(unsigned int));

    /* Prescale the grid points into intensities. */

    cp = (unsigned char *) XtMalloc(meshsize * meshsize + 1);
    ap = cp;
    for (i = 0; i < meshsize; i++)
	for (j = 0; j < meshsize; j++)
	    *ap++ = (255.0 * (Real(a, i, j) + 1.0)) / 2.0;
    /* Hack: make an extra array entry */
    *ap = ap[-1];

    /* Fill the screen from the computed intensity grid by mapping screen points
       onto the grid, then calculating each pixel value by bilinear
       interpolation from the surrounding grid points.  (N.b. the pictures would
       undoubtedly look better when generated with small grids if a more
       well-behaved interpolation were used.)

       Before  we get started, precompute the line-level interpolation
       parameters and store them in an array so we don't  have  to  do
       this every time around the inner loop. */

#define UPRJ(a,size) ((a)/((size)-1.0))

    for (x = 0; x < width; x++) {
	double bx = (meshsize - 1) * UPRJ(x, width);

	bxf[x] = floor(bx);
	bxc[x] = bxf[x] + 1;
	u[x] = bx - bxf[x];
	u1[x] = 1 - u[x];
    }

    for (y = 0; y < height; y++) {
	double t, t1, by;
	int byf, byc;

	by = (meshsize - 1) * UPRJ(y, height);
	byf = floor(by) * meshsize;
	byc = byf + meshsize;
	t = by - floor(by);
	t1 = 1 - t;

	if (clouds) {
	    /* Render the FFT output as clouds. */

	    for (x = 0; x < width; x++) {
		double r = t1 * u1[x] * cp[byf + bxf[x]] +
		t * u1[x] * cp[byc + bxf[x]] +
		t * u[x] * cp[byc + bxc[x]] +
		t1 * u[x] * cp[byf + bxc[x]];
		unsigned char w = (r > 127.0) ? (255 * ((r - 127.0) / 128.0)) : 0;

		*op++ = w;	/* blue trough white */
		*op++ = w;
		*op++ = 255;
	    }
	} else
	    for (x = 0; x < width; x++) {
		double r = t1 * u1[x] * cp[byf + bxf[x]] +
		t * u1[x] * cp[byc + bxf[x]] +
		t * u[x] * cp[byc + bxc[x]] +
		t1 * u[x] * cp[byf + bxc[x]];
		int ir, ig, ib;

		if (r >= 128) {
		    int ix = ((r - 128) * (ELEMENTS(pgnd) - 1)) / 127;

		    /* Land area.  Look up colour based on elevation from
		       precomputed colour map table. */

		    ir = pgnd[ix][0];
		    ig = pgnd[ix][1];
		    ib = pgnd[ix][2];
		} else {
		    /* Water.  Generate clouds above water based on elevation.  */
		    ir = ig = r > 64 ? (r - 64) * 4 : 0;
		    ib = 255;
		}

		*op++ = ir;
		*op++ = ig;
		*op++ = ib;
	    }
    }

    XtFree(cp);
    XtFree((char *) u);
    XtFree((char *) u1);
    XtFree((char *) bxf);
    XtFree((char *) bxc);
    XtFree((char *) a);

    return output;
}

#endif				/* FEATURE_FRACTAL */