File: ssec.cpp

package info (click to toggle)
xplanet 1.3.0-5.1
  • links: PTS
  • area: main
  • in suites: bullseye, buster
  • size: 4,348 kB
  • sloc: cpp: 24,131; ansic: 6,295; sh: 3,247; makefile: 349
file content (234 lines) | stat: -rw-r--r-- 7,003 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <sstream>
using namespace std;

#include "findFile.h"
#include "xpUtil.h"

#include "libimage/Image.h"

/*
  Convert lon, lat coordinates to screen coordinates for the Mollweide
  projection.
*/
static void
sphericalToPixel(const int width, const int height, 
                 const double lon, const double lat, 
                 int &x, int &y)
{
    double theta = lat;
    double del_theta = 1;
    while (fabs(del_theta) > 1e-5)
    {
        del_theta = -((theta + sin(theta) - M_PI * sin(lat)) 
                      / (1 + cos(theta)));
        theta += del_theta;
    }
    theta /= 2;

    double X = lon / M_PI * cos(theta);
    double Y = sin(theta);

    x = (int) ((X + 1) * width/2);
    y = (int) (height/2 * (1 - Y));
}

/*
  Convert x, y coordinates on the screen to lon, lat for a rectangular
  projection.
*/
static void
pixelToSpherical(const int width, const int height, 
                 const int x, const int y, 
                 double &lon, double &lat)
{
    lon = (x + 0.5) * TWO_PI / width - M_PI;
    lat = M_PI_2 - (y + 0.5) * M_PI / height;
}

static void
equalizeHistogram(unsigned char *&rgb, const int width, const int height)
{
    // create a histogram
    int *hist = new int[256];
    for (int i = 0; i < 256; i++) hist[i] = 0;
    for (int i = 0; i < 3 * width * height; i += 3) 
        hist[(int) rgb[i]]++;

    // create an integrated histogram
    int *ihist = new int[256];
    ihist[0] = hist[0];
    for (int i = 1; i < 256; i++) ihist[i] = ihist[i-1] + hist[i];

    // replace the histogram by an intensity map
    double denom = static_cast<double> (ihist[255] - ihist[0]);
    if (denom > 0)
    {
        for (int i = 0; i < 256; i++)
            hist[i] = static_cast<int> (255 * (ihist[i] - ihist[0])/denom);
        
        for (int i = 0; i < 3 * width * height; i++) 
            rgb[i] = static_cast<unsigned char> (hist[static_cast<int>(rgb[i])]);
    }
    
    delete [] hist;
    delete [] ihist;
}

/*
  This routine reads in a global cloud image downloaded from
  http://www.ssec.wisc.edu/data/comp/latest_moll.gif 
  and reprojects and resizes the image, gets rid of the ugly pink
  coastlines, and stretches the contrast.
*/
static bool
convertSsecImage(Image *image, unsigned char *&rgb)
{
    // There's a 20 pixel border on the left & right and a 10 pixel border
    // on the top and bottom
    image->Crop(10, 20, image->Width() - 10, image->Height() - 20);
    const int image_height = image->Height();
    const int image_width = image->Width();

    // This array will hold the final cloud image
    rgb = (unsigned char *) malloc(3 * image_width * image_height);
    if (rgb == NULL) return(false);

    memset(rgb, 0, 3 * image_width * image_height);

    // This converts the mollweide projection to rectangular
    double lon, lat;
    int ipos = 0;
    const unsigned char *moll = image->getRGBData();
    for (int j = 0; j < image_height; j++)
    {
        for (int i = 0; i < image_width; i++)
        {
            int ii, jj;
            pixelToSpherical(image_width, image_height, i, j, lon, lat);
            sphericalToPixel(image_width, image_height, lon, lat, ii, jj);
            memcpy(rgb + ipos, moll + 3 * (jj * image_width + ii), 3);
            ipos += 3;
        }
    }

    int avg;
    int npoints;
    int avgwhole = 0;
    int npointswhole = 0;

    // Replace pink outlines by the average value in a 10x10 pixel square.
    for (int j = 0; j < 31; j++)
    {
        for (int i = 0; i < 62; i++)
        {
            avg = 0;
            npoints = 0;
            for (int jj = 0; jj < 10; jj++)
            {
                for (int ii = 0; ii < 10; ii++)
                {
                    ipos = 3*((10 * j + jj) * 620 + 10 * i + ii);
                    if (!(rgb[ipos] == 0xff 
                          && rgb[ipos+1] == 0
                          && rgb[ipos+2] == 0xff))
                    {
                        npoints++;
                        avg += (int) rgb[ipos];
                        npointswhole++;
                        avgwhole += (int) rgb[ipos];
                    }
                }
            }
            if (npoints != 0) avg = (int) (avg / (double) npoints);

            for (int jj = 0; jj < 10; jj++)
            {
                for (int ii = 0; ii < 10; ii++)
                {
                    ipos = 3*((10 * j + jj) * 620 + 10 * i + ii);
                    if (rgb[ipos] == 0xff 
                        && rgb[ipos+1] == 0
                        && rgb[ipos+2] == 0xff) 
                        memset(rgb + ipos, avg, 3);
                }
            }
        }
    }
    // Fill in the poles
    if (npointswhole != 0) 
        avgwhole = (int) (avgwhole / (double) npointswhole);
    for (int i = 0; i < image_width * image_height; i++)
    {
        ipos = 3 * i;
        if (rgb[ipos] < 0x03) memset(rgb + ipos, avgwhole, 3);
    }

    // Smooth out the seam at 180 degrees Longitude
    double eastVal, westVal;
    int eastIndex, westIndex;
    for (int i = 0; i < image_height - 1; i++)
    {
        eastIndex = 3 * (i * image_width + 1);
        westIndex = 3 * ((i + 1) * image_width - 2);
        eastVal = (double) rgb[eastIndex];
        westVal = (double) rgb[westIndex];
        memset(rgb + eastIndex - 3, 
               (int) (eastVal + (westVal - eastVal)/3), 3);
        memset(rgb + westIndex + 3, 
               (int) (westVal + (eastVal - westVal)/3), 3);
    }

    equalizeHistogram(rgb, image_width, image_height);

    return(true);
}

void
loadSSEC(Image *&image, const unsigned char *&rgb, string &imageFile, 
         const int imageWidth, const int imageHeight)
{
    bool foundFile = findFile(imageFile, "images");
    if (foundFile) 
    {
        image = new Image;
        foundFile = image->Read(imageFile.c_str());
    }
    
    if (foundFile)
    {
        unsigned char *tmpRGB = NULL;
        if (!convertSsecImage(image, tmpRGB))
        {
            ostringstream errStr;
            errStr << "Can't read SSEC map file: " << imageFile << "\n";
            xpWarn(errStr.str(), __FILE__, __LINE__);
            return;
        }

        Image *tmpImage = image;
        image = new Image(image->Width(), image->Height(), tmpRGB, NULL);
        delete tmpImage;
        free(tmpRGB);
        if ((image->Width() != imageWidth)
            || (image->Height() != imageHeight))
        {
            ostringstream errStr;
            errStr << "Resizing SSEC cloud map\n"
                   << "For better performance, all image maps should "
                   << "be the same size as the day map\n";
            xpWarn(errStr.str(), __FILE__, __LINE__);
            image->Resize(imageWidth, imageHeight);
        }
        rgb = image->getRGBData();
    }
    else
    {
        ostringstream errStr;
        errStr << "Can't load map file " << imageFile << "\n";
        xpWarn(errStr.str(), __FILE__, __LINE__);
    }
}