File: xppodes.html

package info (click to toggle)
xppaut 5.85-3
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 11,552 kB
  • ctags: 7,725
  • sloc: ansic: 80,633; cpp: 965; makefile: 265
file content (487 lines) | stat: -rw-r--r-- 15,970 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
<HTML>
<HEAD>
<TITLE>xppodes</TITLE>
</HEAD>
<body bgcolor="#ffffff" link="#330099" alink="#FF3300" vlink="#330099">
<P>
<center>
<h1>Structure of ODE files</h1> 

</DIV>

<P>
All ODE files are just text files which consist of a series of
definitions and directives to the <B>XPP</B> parser. The order in which the
definitions are given is usually unimportant with one <B>major
exception</B>. So-called fixed or temporary variables are evaluated in
the order in which they are defined.  Thus, you should <B>never</B> use
a named fix variable before it is defined as this will lead to some
rather bizarre results when you attempt to solve an ODE. ODE files are
all line oriented with a limit of 1024 characters per line. You can
use the standard line continuation symbol <b> \ </b>.  Here are all
the possible ODE file directives:
<DL>
<DD><B>#</B>:  comment line. This is ignored by <B>XPP</B>   
 <p>
<dt></dt><hr><p><DD><B>''</B>: A comment that is extracted and can be displayed in a
separate window. 
<p>
<dt></dt><hr><p><DD><a name=action> <B>'' {a=1,b=2,...}</B></a>: A comment with some ``action''
associated with it.  When these comments are displayed in the comment
window, an <B>* </B> appears next to them.  When clicked by the user,
various initial conditions, parameters, and XPP internal options can
be set. 
 <p>
<dt></dt><hr><p><DD><B>!</B><TT>name=formula</TT> This defines a <EM>derived</EM>
parameter, <TT>name</TT> whose values could depend on other
parameters. These do not appear in the parameter list since they are
presumably tied to the other parameters. Ecah time you change a
parameter, they also are updated. 
 <p>
<dt></dt><hr><p><DD><B>options</B> <TT>filename</TT>:  Insert a file name with common
options. This is include only for backward compatibility
and is generally obsolete.
 <p>

<dt></dt><hr><p><DD><B>name(t+1)=</B><TT>formula</TT> or
 <p>

<dt></dt><hr><p><DD><B>dname/dt=<TT>formula</TT></B> or
 <p>

<dt></dt><hr><p><DD><B>name'=</B><TT>formula</TT>: Define a differential/difference equation
dependent variable, <B>name</B> and the <TT>formula</TT> defining its
right-handside. For example
<PRE>
x'=-x+sin(t)
z(t+1)=z*(4-z)
dw/dt=1-cos(w)+(1+cos(w))*a
</PRE>

<p>
<dt></dt><hr><p><DD><B>name(t)=</B><TT>formula</TT> or
 <p>
<dt></dt><hr><p><DD><B>volterra </B><TT>name = formula</TT>: Define a Volterra integral
equation for the variable <B>name</B>. For example 
<PRE>
y(t)=int{exp(-t)#x}
y'=-y + a int{exp(-(t-t'))*max(y-1/(1+(t-t')^2),0)}
y(t)=int[.5]{1#y}
</PRE>
The <b> # </b>  symbol means a convolution and <b>[a]</b> multiplies the integrand by
<p> <center> <h3> (t-t')<sup>-a</sup> </h3> </center> <p> 
<p>

<dt></dt><hr><p><DD><B>markov</B> <TT>name</TT> <TT>nstates</TT> 

<table COLS=4 WIDTH="40%"  >
<tr>
<td>{0}</td>

<td>{P<sub>0,1</sub>}</td>

<td><b> ...</b></td>

<td>{P<sub>0,N-1</sub>}</td>
</tr>

<tr>
<td>{P<sub>1,0</sub>}</td>

<td>{0}</td>

<td><b> ...</b></td>

<td>{P<sub>1,N-1</sub>}</td>
</tr>

<tr>
<td><b> ...</b> </td>

<td><b> ...</b> </td>

<td><b>...</b></td>

<td><b>...</b></td>
</tr>

<tr >
<td>{P<sub>N-1,0</sub>}</td>

<td>{P<sub>N-1,1</sub>}</td>

<td><b>...</b></td>

<td >{P<sub>N-1,N-1</sub>}</td>
</tr> 
</table>
<P></P>
This defines a Markov variable, <B>name</B> which has <TT>nstates</TT>
states. Then following is the transition table as a series of formulas
that are delimited by the curly brackets <b> { } </b>.  The diagonal
entries are ignored but should still contain a number or formula. For
example:
<PRE>
markov z 2
{0} {alpha(v)}
{beta(v)} {0}
</PRE>
defines a two-state Markov process with transition from state 0 to 1 determined by the rate <tt> alpha(v) </tt> and the transition from 1 to 0 determoined by <tt> beta(v) </tt>
<p>
<dt></dt><hr><p><DD><B>aux</B> name=formula defines a named quantity, <B>name</B>
which appears in the data browser and is available for plotting. Note
that <B>auxiliary</B> variables are not known internally to <B>XPP</B> so
that you can't use them  in formulas
 <p>
<dt></dt><hr><p><DD><B>name=</B> <TT>formula</TT> defines an internal or quantity which
can be used in other formulas. This <TT>fixed</TT> variable serves the
same function as temporary quantities in C code.
<p>
<dt></dt><hr><p><DD><B>par </B> <TT>name1=value1, name2=value2, ...</TT> defines
named parameters with default values. These can later be altered and
varied in <B>XPP</B>.  <B>Never put spaces between the name, value, and
equal sign</B>. For example:
<PRE>
par a=1,b=2,c=2,big_g=20
</PRE>
</DD> <p>
<DT></DT>
<dt></dt><hr><p><DD><B>number </B> <TT>name1=value1, name2=value2, ...</TT> defines
named parameters with default values. These are fixed and cannot be
changed in <B>XPP</B>. For example:
<PRE>
number faraday=96485,rgas=8.3147,tabs0=273.15
</PRE>
 <p>
<DT></DT>
<dt></dt><hr><p><DD><B>name(x,y,...)</B>=<TT>f(x,y,...)</TT> defines a function of up
to 9 variables.  This function can be used in any right-hand side or
other functions. For example:
<PRE>
f(x)=if(x&gt;1)then(1/ln(x/(x-1)))else(0)
g(v,w)=2v^2(1-w)-w/10
</PRE>
 <p>
<DT></DT>
<dt></dt><hr><p><DD><a name=table> <B>table</B> </a> <TT>name filename</TT> defines a lookup table called
<B>name</B> defined the values found in the file, <B>filename</B>. This
behaves as a one variable function which uses linear interpolation on
the values of the tabulated file. The file has the structure:
<PRE>
npts
xlo
xhi
y(xlo)
...
y(xhi)
</PRE>
The domain of the function is <b> [x<sub>lo</sub>,x<sub>hi</sub>]</b>
<p>
<DT></DT>
<dt></dt><hr><p><DD><B>table</B> <TT>% name npts xlo xhi f(t)</TT> defines a
precomputed table called <B>name</B> using <B>npts</B> and evaluating
<B>f(t)</B> at <b> t=x<sub>lo</sub>,...,x<sub>hi</sub> </b>
For example:
<PRE>
table h % 101 0 6.283 sin(t)+.6+.4*cos(t)+.2*sin(2*t)
</PRE> 
Tables are automatically
re-evaluated whenever you change parameters unless you turn off the
AUTOEVALUATE flag from within <b> XPP </b> or in the ODE file with
<pre>
@ autoeval=0
</pre>
 <p>
<DT></DT>
<dt></dt><hr><p><DD><B>wiener</B> <TT>name1, name2, ...</TT>  defines a series of
normally distributed random variables with mean 0 and standard
deviation <b> sqrt(dt) </b> where <b> dt </b>
is the internal time step. The
advantage of using <B>wiener</B> is that when you change the time-step,
the magnitude of these variables is automatically adjusted.
 <p>
<DT></DT>
<dt></dt><hr><p><DD><B>global</B> <TT>sign condition {name1=form1;...}</TT> defines a
global flag allowing <B>XPP</B> to implement delta functions.  If <B>sign=1</B> and <B>condition</B> changes from negative to positive or
if <B>sign=-1</B> and <B>condition</B> changes from positive to
negative, or if <B>sign=0</B> and <B>condition</B> vanishes identically,
then each of the variables, <B>name</B>  is immediately changed to the
value of <B>formula</B>.  For example:
<PRE>
global 1 x-1 {x=0;y=y+a*sin(y)}
</PRE>
</DD> <p>
<DT></DT>
<dt></dt><hr><p><DD><B>init</B> <TT>name1=val1,name2=val2,...</TT> sets the initial
data of <B>name</B> to the number <B>val</B>.  
</DD> <p>
<DT></DT>
<dt></dt><hr><p><DD><B>name(0)</B><TT>= expression</TT> sets the initial value of <B>name</B> to the expression. If <B>name</B> is a delay-differential
equation variable, then if <B>expression</B> is a function of time,
<B>t</B>, then <B>name(t)</B> is set to the function for <b> -M &lt; t &lt; 0 </b>  where <b> M </b> 
is the maximum delay. For example:
<PRE>
x'=-delay(x,2)
x(0)=sin(t)
</PRE>
</DD> <p>
<DT></DT>
<dt></dt><hr><p><DD><B>bdry</B> <TT>expression</TT> defines a boundary condition at the
start or the end of an interval.  If the variable name is primed, then
it refers to the end of the interval, otherwise to the start of the
interval. For example:
<PRE>
bdry u'-v-1
</PRE>
forces the boundary condition <b>u(L)-v(0)-1=0</b> 
where  <b> [0,L] </b> is the
interval for the ODE.
</DD> <p>
<DT></DT>
<dt></dt><hr><p><DD><B>0=</B> <TT>expression</TT> defines an algebraic condition for
differential-algebric equations. 
</DD> <p>
<DT></DT>
<dt></dt><hr><p><DD><B>solve</B> <TT>name=expression</TT> tells <B>XPP</B> to solve the
algebraic conditions for the variable <B>name</B> with initial guess
<B>expression</B>.  For example:
<PRE>
x'=-y
init x=0
0=y+exp(y)-x
solv y=-.56715
</PRE>
Solves the DAE <b>x'=-y</b> 
where <b> y+e^y=x </b> 
Note that there is no closed
form inverse of <b> y+e^y. </b> 
</DD> <p>
<DT></DT>
<dt></dt><hr><p><DD><B>special</B> <TT>name=FUN(...)</TT> defines a one-dimensional 
array <B>name</B> that represents a special summation involving an
array of variables and a table.  <B>FUN</B> can be one of the
following:
<p>
<uL>
<li><B>conv</B>(type,n,m,w,u):
<BR><P><center> 
<b>
 name(j)= sum(w(m+i)shift(u,j+i),i=-m..m), j=0,...,n-1
</b> </center>
<p>
<BR CLEAR="ALL">
<P></P>
where <b> w </b> 
is a <a href=#table> table </a>  of length <b> 2m+1 </b>
and <B>type={even,0,periodic}</B> determines how <b> u(j+i) </b> 
 is defined for <b> j+i &lt;0 </b> and <b> j+1 &gt; n-1 </b>
<p>

<li><B>fconv</B>(type,n,m,w,u,v,f):
<BR><P>
<center>
<b>
 name(j)= sum(w(m+i)f[shift(u,j+i),shift(v,j)],i=-m..m), j=0,...,n-1
</b> </center>
<p>
<BR CLEAR="ALL">
<P>

<li><B>sparse</B>(n,m,w,l,u) evaluates to
<BR><P>
<center><b>
 name(j)= sum(w[j m + i]shift(u,c[j m + i]),i=0..m-1), j=0,...,n-1
</b> </center>
<p>
where <b> w </b>
 is a table of values of length <b> m n </b> 
and <b> c </b> 
is a table of indices of
length <b> m n </b> 
<p>
<li><B>fsparse</B>(n,m,w,l,u,v,f) evaluates to
<p><center>
<b>
 name(j)= sum(w[j m + i]f(shift(u,c[j m + i]),shift(v,j)),i=0..m-1), j=0,...,n-1
</b> </center>
<P></P> 
<li><B>mmult</B>(m,n,w,u) evaluates to:
<BR><P>
<center>
<b>
 name(j)=sum(w(i + m j)*u(i),i=0..m-1), j=0,...,n-1
</b>
</center>
<p>
In other words, it returns the product of an <b> n &times; m </b>  matrix with a <b> m </b> dimensional vector.
<P></P>

<li><B>fmmult</B>(m,n,w,u,v,f) evaluates to:
<BR><P>
<center>
<b> 
name(j)=sum(w(i + m j)*f(u(i),v(j)),i=0..m-1), j=0,...,n-1
</b>
</center>
<p>
</ul>
These can then be used in right-hand sides of ODEs.  For example
<PRE>
table w % 21 -10 10 exp(-abs(t))
special k=conv(even,101,21,w,u0)
u[0..100]'=-u[j]+f(k([j]))
</PRE>
Here <TT>k</TT> evaluates as the discrete convolution of <b> 
exp(-|x|) </b> 
with the array <b> u. </b> 
<p>
<dt></dt> <hr> <p> <dd> <b>only</b> <tt> x1,x2,... </tt> write <i>only</i> 
the listed variables to the output for batch integration.
<p>
<dt></dt><hr><p><DD><B>set</B> <TT>name {x1=z1,x2=z2,...,}</TT> defines a named set of
declarations including parameter values, initial data, and options,
which can be invoked while running <B>XPP</B> with the <TT>File</TT> <TT>Get
par set</TT> command. For example:
<PRE>
set hopf {a=.3,x=1.2,b=9}
</PRE>
 <p>
<dt></dt><hr><p><DD><B>@</B> <TT>opt1=val1,opt2=val2,...</TT> sets various internal
<B>XPP</B> options. For example:
<PRE>
@ maxstor=100000,total=1000,dt=.02
</PRE> 
See <a href=xppopt.html> OPTIONS </a> for a complete list of options.
<p>
<dt></dt><hr><p><DD><B>anything[j1..j2]</B> <TT>expr[j]</TT> is expanded by <B>XPP</B> into <b> j<sub>2</sub>-j<sub>1</sub>+1 </b>
statements e.g.
<PRE>
x[1..4]'=-x[j]+[j]
</PRE>
is expanded into:
<PRE>
x1'=-x1+1
x2'=-x2+2
x3'=-x3+3
x4'=-x4+4
</PRE>
</DD> <p>
<dt></dt><hr><p><DD><B>%[j1..j2]</B> expands all following statements until
another <B>%</B> is encountered as above. For example:
<PRE>
%[1..4]
x[j]'=-y[j]-x[j-1]
y[j]'=x[j]
%
</PRE>
is expanded into:
<PRE>
x1'=-y1-x0
y1'=x1
x2'=-y2-x1
y2'=x2
x3'=-y3-x2
y3'=x3
x4'=-y4-x3
y4'=x4
</PRE>
</dd>
<P>
 <p>
<dt></dt><hr> <p> <dd> <b> export </b><code> {x1,x2,...,xn} {y1,...,yn} </code> sends and receives variables and parameters to and from dynamically loaded libraries. 
<a href=xppdll.html> Click here for details. </a> <p>
</dd> 
<dt></dt><hr><p><DD><B>done</B> tells <B>XPP</B> the file is complete.
</DD> <p>
</DL>

<P>
<hr>
<hr>
<center>
<a name=functs> <h1> Reserved words </h1> </a> 
</center>
You should be aware of the following
keywords that should not be used in your ODE files for anything other
than their meaning here.
<PRE>
sin cos tan atan atan2 sinh cosh tanh
exp delay ln log log10 t pi if then else
asin acos heav sign ceil flr ran abs del_shft
max min normal besselj bessely erf erfc hom_bcs
arg1 ... arg9  @ $ + - / * ^ ** shift
| &gt; &lt; == &gt;= &lt;= != not \# int sum of i'
</PRE>

<P>
These are mainly self-explanatory. The nonobvious ones are:

<UL>
<LI><TT>heav(arg1)</TT> the step function, zero if <TT>arg1&lt;0</TT> and 1 otherwise.
</LI>
<LI><TT>sign(arg)</TT> which is the sign of the argument (zero has sign 0)
</LI>
<LI><TT>ran(arg)</TT> produces a uniformly distributed random number
between 0 and <TT>arg.</TT>
</LI>
<LI><TT>besselj, bessely </TT> take two arguments, <b> (n,x) </b> 
and return <b> J<sub>n</sub>(x) </b> and <b> Y<sub>n</sub>(x) </b>
respectively, the Bessel functions.
</LI>
<LI> <TT>erf(x), erfc(x)</TT> are the error function and the
complementary function. 
</LI>
<LI><TT>normal(arg1,arg2)</TT> produces a normally distributed random number
with mean <TT>arg1</TT>  and variance <TT>arg2</TT>.
</LI>
<LI><TT>max(arg1,arg2)</TT> produces the maximum of the two arguments
and <TT>min</TT>  is 
the minimum of them.
</LI>
<LI><TT>if(&lt;exp1&gt;)then(&lt;exp2&gt;)else(&lt;exp3&gt;)</TT> evaluates <TT>&lt;exp1&gt; </TT>
If it is nonzero 
it evaluates to <TT>&lt;exp2&gt;</TT> otherwise it is  <TT>&lt;exp3&gt;</TT>.  E.g. <TT>if(x&gt;1)then(ln(x))else(x-1)</TT>
will lead to <TT>ln(2)</TT>  if <TT>x=2</TT>  and  <TT>-1 if x=0.</TT>
</LI>
<LI><TT>delay(&lt;var&gt;,&lt;exp&gt;)</TT> returns variable <TT>&lt;var&gt;</TT> delayed by the result of
 evaluating <TT>&lt;exp&gt;</TT>.  In order to use the delay you must inform
the program of the maximal possible delay so it can allocate storage.
<a href=xppnumerics.html#delay> (see the numerics menu) </a>
</LI>
<LI><TT>ceil(arg),flr(arg)</TT>  are the integer parts of<TT>&lt;arg&gt;</TT> returning the
 smallest integer greater than and the largest integer less than <TT>&lt;arg&gt;</TT>.  
</LI>
<LI><TT>t </TT> is the current time in the integration of the differential equation.
</LI>
<LI><TT>pi</TT>  is <b>3.1415926...</b> 
</LI>
<LI><TT>arg1, ..., arg9</TT> are the formal arguments for functions 
</LI>
<LI><TT>int, #</TT> concern Volterra equations.
</LI>
<LI><TT>shift(&lt;var&gt;,&lt;exp&gt;)</TT> This operator evaluates the expression
<TT>&lt;exp&gt;</TT> converts it to an integer and then uses this to indirectly
address a variable whose address is that of <TT>&lt;var&gt;</TT> plus the
integer value of the expression.  This is a way to imitate arrays in
XPP.  For example if you defined the sequence of 5 variables, <TT>u0,u1,u2,u3,u4</TT> one right after another, then <TT>shift(u0,2)</TT> would
return the value of <TT>u2.</TT>
</LI>
<LI><TT>del_shft(&lt;var&gt;,&lt;shft&gt;,&lt;delay&gt;).</TT> This operator combines the
<TT>delay</TT> and the <TT>shift</TT> operators and returns the value of the
variable <TT>&lt;var&gt;</TT> shifted by <TT>&lt;shft&gt;</TT> at the delayed time given
by <TT>&lt;delay&gt;</TT>.  It is of limited utility as far as I know, but I
needed it for a problem, so here it is.  
</LI>
<LI><TT>sum(&lt;ex1&gt;,&lt;ex2&gt;)of(&lt;ex3&gt;)</TT> is a way of summing up things.
The expressions <TT>&lt;ex1&gt;,&lt;ex1&gt;</TT> are evaluated and their integer
parts are used as the lower and upper limits of the sum.  The index of
the sum is <TT>i'</TT> so that you cannot have double sums since there is
only one index.  <TT>&lt;ex3&gt;</TT> is the expression to be summed and will
generally involve <TT>i'.</TT>  For example  <TT>sum(1,10)of(i')</TT> will
be evaluated to 55.  Another example combines the sum with the shift
operator.  <TT>sum(0,4)of(shift(u0,i'))</TT> will sum up <TT>u0</TT> and the
next four variables that were defined after it. 
</LI>
<li> <tt> hom_bcs(&lt;int&gt;) </tt> is used only to tell <b> XPP </b> about
 heteroclinic and homoclinic connections at boundary points.
</UL>