1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
#include "auto_f2c.h"
#include "auto_c.h"
#include "auto_types.h"
#ifdef TIME
#include <unistd.h>
#include <sys/time.h>
#include <sys/resource.h>
static double time_start (void) {
struct rusage time;
double seconds,microseconds;
getrusage(RUSAGE_SELF,&time);
seconds = (double)time.ru_utime.tv_sec;
microseconds = (double)time.ru_utime.tv_usec;
return seconds + microseconds/1e6;
}
static double time_end(double start) {
struct rusage time;
double seconds,microseconds;
getrusage(RUSAGE_SELF,&time);
seconds = (double)time.ru_utime.tv_sec;
microseconds = (double)time.ru_utime.tv_usec;
return (seconds + microseconds/1e6)-start;
}
#endif
/*This is the process function. It is meant to be called either
on a SMP using shared memory, or wrapped inside another
routine for message passing*/
void *conpar_process(void * arg)
{
integer icf_dim1, irf_dim1, d_dim1;
integer a_dim1, a_dim2, b_dim1, b_dim2, c_dim1, c_dim2;
/* Local variables */
integer ipiv, jpiv, itmp;
doublereal tpiv;
integer i, l, k1, k2, m1, m2, ic, ir;
doublereal rm;
integer ir1, irp;
doublereal piv;
integer icp1;
integer *nov, *nra, *nca;
doublereal *a;
integer *ncb;
doublereal *b;
integer *nbc, *nrc;
doublereal *c, *d;
integer *irf, *icf;
integer loop_start,loop_end;
nov = ((conpar_parallel_arglist *)arg)->nov;
nra = ((conpar_parallel_arglist *)arg)->nra;
nca = ((conpar_parallel_arglist *)arg)->nca;
a = ((conpar_parallel_arglist *)arg)->a;
ncb = ((conpar_parallel_arglist *)arg)->ncb;
b = ((conpar_parallel_arglist *)arg)->b;
nbc = ((conpar_parallel_arglist *)arg)->nbc;
nrc = ((conpar_parallel_arglist *)arg)->nrc;
c = ((conpar_parallel_arglist *)arg)->c;
d = ((conpar_parallel_arglist *)arg)->d;
irf = ((conpar_parallel_arglist *)arg)->irf;
icf = ((conpar_parallel_arglist *)arg)->icf;
loop_start = ((conpar_parallel_arglist *)arg)->loop_start;
loop_end = ((conpar_parallel_arglist *)arg)->loop_end;
/* In the default case we don't need to do anything special */
if(global_conpar_type == CONPAR_DEFAULT) {
;
}
/* In the message passing case we set d to be
0.0, do a sum here, and then do the final
sum (with the true copy of d) in the
master */
else if (global_conpar_type == CONPAR_MPI) {
for(i=0;i<(*ncb)*(*nrc);i++)
d[i]=0.0;
}
/* In the shared memory case we create a local
variable for doing this threads part of the
sum, then we do a final sum into shared memory
at the end */
else if (global_conpar_type == CONPAR_PTHREADS) {
;
}
/* Note that the summation of the adjacent overlapped part of C */
/* is delayed until REDUCE, in order to merge it with other communications.*/
/* NA is the local NTST. */
irf_dim1 = *nra;
icf_dim1 = *nca;
d_dim1 = *ncb;
a_dim1 = *nca;
a_dim2 = *nra;
b_dim1 = *ncb;
b_dim2 = *nra;
c_dim1 = *nca;
c_dim2 = *nrc;
/* Condensation of parameters (Elimination of local variables). */
m1 = *nov + 1;
m2 = *nca - *nov;
for (i = loop_start;i < loop_end; i++) {
for (ic = m1; ic <= m2; ++ic) {
ir1 = ic - *nov + 1;
irp = ir1 - 1;
icp1 = ic + 1;
/* **Search for pivot (Complete pivoting) */
piv = 0.0;
ipiv = irp;
jpiv = ic;
for (k1 = irp; k1 <= *nra; ++k1) {
int irf_k1_i = irf[-1 + k1 + i*irf_dim1];
for (k2 = ic; k2 <= m2; ++k2) {
int icf_k2_i = icf[-1 + k2 + i*icf_dim1];
tpiv = a[-1 + icf_k2_i + a_dim1*(-1 + irf_k1_i + a_dim2*i)];
if (tpiv < 0.0) {
tpiv = -tpiv;
}
if (piv < tpiv) {
piv = tpiv;
ipiv = k1;
jpiv = k2;
}
}
}
/* **Move indices */
itmp = icf[-1 + ic + i*icf_dim1];
icf[-1 + ic + i*icf_dim1] = icf[-1 + jpiv + i*icf_dim1];
icf[-1 + jpiv + i*icf_dim1] = itmp;
itmp = irf[-1 + irp + i*irf_dim1];
irf[-1 + irp + i*irf_dim1] = irf[-1 + ipiv + i*irf_dim1];
irf[-1 + ipiv + i*irf_dim1] = itmp;
{
int icf_ic_i = icf[-1 + ic + i*icf_dim1];
int irf_irp_i = irf[-1 + irp + i*irf_dim1];
int a_offset2 = a_dim1*(-1 + irf_irp_i + a_dim2*i);
int b_offset2 = b_dim1*(-1 + irf_irp_i + b_dim2*i);
/* **End of pivoting; elimination starts here */
for (ir = ir1; ir <= *nra; ++ir) {
int irf_ir_i = irf[-1 + ir + i*irf_dim1];
int a_offset1 = a_dim1*(-1 + irf_ir_i + a_dim2*i);
int b_offset1 = b_dim1*(-1 + irf_ir_i + b_dim2*i);
rm = a[-1 + icf_ic_i + a_dim1*(-1 + irf_ir_i + a_dim2*i)]/a[-1 + icf_ic_i + a_dim1*(-1 + irf_irp_i + a_dim2*i)];
a[-1 + icf_ic_i + a_dim1*(-1 + irf_ir_i + a_dim2*i)] = rm;
if (rm != (double)0.) {
for (l = 0; l < *nov; ++l) {
a[l + a_offset1] -= rm * a[l + a_offset2];
}
for (l = icp1 -1; l < *nca; ++l) {
int icf_l_i = icf[l + i*icf_dim1];
a[-1 + icf_l_i + a_offset1] -= rm * a[-1 + icf_l_i + a_offset2];
}
for (l = 0; l < *ncb; ++l) {
b[l + b_offset1] -= rm * b[l + b_offset2];
}
}
}
for (ir = *nbc + 1; ir <= *nrc; ++ir) {
int c_offset1 = c_dim1*(-1 + ir + c_dim2*i);
int d_offset1 = (-1 + ir)*d_dim1;
rm = c[-1 + icf_ic_i + c_dim1*(-1 + ir + c_dim2*i)]/a[-1 + icf_ic_i + a_dim1*(-1 + irf_irp_i + a_dim2*i)];
c[-1 + icf_ic_i + c_dim1*(-1 + ir + c_dim2*i)]=rm;
if (rm != (double)0.) {
for (l = 0; l < *nov; ++l) {
c[l + c_offset1] -= rm * a[l + a_offset2];
}
for (l = icp1 -1 ; l < *nca; ++l) {
int icf_l_i = icf[l + i*icf_dim1];
c[-1 + icf_l_i + c_offset1] -= rm * a[-1 + icf_l_i + a_offset2];
}
for (l = 0; l < *ncb; ++l) {
/*
A little explanation of what is going on here
is in order I believe. This array is
created by a summation across all workers,
hence it needs a mutex to avoid concurrent
writes (in the shared memory case) or a summation
in the master (in the message passing case).
Since mutex's can be somewhat slow, we will do the
summation into a local variable, and then do a
final summation back into global memory when the
main loop is done.
*/
/* Nothing special for the default case */
if(global_conpar_type == CONPAR_DEFAULT) {
d[l + d_offset1] -= rm * b[l + b_offset2];
}
/* In the message passing case we sum into d,
which is a local variable initialized to 0.0.
We then sum our part with the masters part
in the master. */
else if (global_conpar_type == CONPAR_MPI) {
d[l + d_offset1] -= rm * b[l + b_offset2];
}
/* In the shared memory case we sum into a local
variable our contribution, and then sum
into shared memory at the end (inside a mutex */
else if (global_conpar_type == CONPAR_PTHREADS) {
;
}
}
}
}
}
}
}
return NULL;
}
int
conpar_default_wrapper(integer *nov, integer *na, integer *nra, integer *nca, doublereal *a, integer *ncb, doublereal *b, integer *nbc, integer *nrc, doublereal *c, doublereal *d, integer *irf, integer *icf)
{
conpar_parallel_arglist data;
data.nov = nov;
data.nra = nra;
data.nca = nca;
data.a = a;
data.ncb = ncb;
data.b = b;
data.nbc = nbc;
data.nrc = nrc;
data.c = c;
data.d = d;
data.irf = irf;
data.icf = icf;
data.loop_start = 0;
data.loop_end = *na;
conpar_process(&data);
return 0;
}
int
conpar(integer *nov, integer *na, integer *nra, integer *nca, doublereal *a, integer *ncb, doublereal *b, integer *nbc, integer *nrc, doublereal *c, doublereal *d, integer *irf, integer *icf)
{
/* Aliases for the dimensions of the arrays */
integer icf_dim1, irf_dim1;
/* Local variables */
integer i,j;
integer nex;
/*< NEX=NCA-2*NOV >*/
irf_dim1 = *nra;
icf_dim1 = *nca;
/* Function Body */
nex = *nca - (*nov << 1);
if (nex == 0) {
return 0;
}
/* Initialization */
for (i = 0; i <*na; ++i) {
for (j = 0; j < *nra; ++j) {
irf[j + i * irf_dim1] = j+1;
}
for (j = 0; j < *nca; ++j) {
icf[j + i * icf_dim1] = j+1;
}
}
switch(global_conpar_type) {
default:
conpar_default_wrapper(nov, na, nra, nca, a,
ncb, b, nbc, nrc, c, d,irf, icf);
break;
}
return 0;
}
|