1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
/******************************************************************
* *
* File : cvdense.c *
* Programmers : Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
* Last Modified : 1 September 1994 *
*----------------------------------------------------------------*
* This is the implementation file for the CVODE dense linear *
* solver, CVDENSE. *
* *
******************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "cvdense.h"
#include "cvode.h"
#include "dense.h"
#include "llnltyps.h"
#include "vector.h"
#include "llnlmath.h"
/* Error Messages */
#define CVDENSE_INIT "CVDenseInit-- "
#define MSG_MEM_FAIL CVDENSE_INIT "A memory request failed.\n\n"
/* Other Constants */
#define MIN_INC_MULT RCONST(1000.0)
#define ZERO RCONST(0.0)
#define ONE RCONST(1.0)
#define TWO RCONST(2.0)
/******************************************************************
* *
* Types : CVDenseMemRec, CVDenseMem *
*----------------------------------------------------------------*
* The type CVDenseMem is pointer to a CVDenseMemRec. This *
* structure contains CVDense solver-specific data. *
* *
******************************************************************/
typedef struct {
CVDenseJacFn d_jac; /* jac = Jacobian routine to be called */
DenseMat d_M; /* M = I - gamma J, gamma = h / l1 */
integer *d_pivots; /* pivots = pivot array for PM = LU */
DenseMat d_savedJ; /* savedJ = old Jacobian */
int d_nstlj; /* nstlj = nst at last Jacobian eval. */
int d_nje; /* nje = no. of calls to jac */
void *d_J_data; /* J_data is passed to jac */
} CVDenseMemRec, *CVDenseMem;
/* CVDENSE linit, lsetup, lsolve, and lfree routines */
static int CVDenseInit(CVodeMem cv_mem, bool *setupNonNull);
static int CVDenseSetup(CVodeMem cv_mem, int convfail, N_Vector ypred,
N_Vector fpred, bool *jcurPtr, N_Vector vtemp1,
N_Vector vtemp2, N_Vector vtemp3);
static int CVDenseSolve(CVodeMem cv_mem, N_Vector b, N_Vector ycur,
N_Vector fcur);
static void CVDenseFree(CVodeMem cv_mem);
/*************** CVDenseDQJac ****************************************
This routine generates a dense difference quotient approximation to
the Jacobian of f(t,y). It assumes that a dense matrix of type
DenseMat is stored column-wise, and that elements within each column
are contiguous. The address of the jth column of J is obtained via
the macro DENSE_COL and an N_Vector with the jth column as the
component array is created using N_VMAKE and N_VDATA. Finally, the
actual computation of the jth column of the Jacobian is done with a
call to N_VLinearSum.
**********************************************************************/
void CVDenseDQJac(integer N, DenseMat J, RhsFn f, void *f_data, real tn,
N_Vector y, N_Vector fy, N_Vector ewt, real h, real uround,
void *jac_data, int *nfePtr, N_Vector vtemp1,
N_Vector vtemp2, N_Vector vtemp3)
{
real fnorm, minInc, inc, inc_inv, yjsaved, srur;
real *y_data, *ewt_data;
N_Vector ftemp, jthCol;
integer j;
ftemp = vtemp1; /* Rename work vector for use as f vector value */
/* Obtain pointers to the data for ewt, y */
ewt_data = N_VDATA(ewt);
y_data = N_VDATA(y);
/* Set minimum increment based on uround and norm of f */
srur = RSqrt(uround);
fnorm = N_VWrmsNorm(fy, ewt);
minInc = (fnorm != ZERO) ?
(MIN_INC_MULT * ABS(h) * uround * N * fnorm) : ONE;
N_VMAKE(jthCol, NULL, N);
/* this is the only for loop for 0..N-1 in CVODE */
for (j=0; j < N; j++) {
/* Generate the jth col of J(tn,y) */
N_VDATA(jthCol) = DENSE_COL(J,j);
yjsaved = y_data[j];
inc = MAX(srur*ABS(yjsaved), minInc/ewt_data[j]);
y_data[j] += inc;
f(N, tn, y, ftemp, f_data);
inc_inv = ONE/inc;
N_VLinearSum(inc_inv, ftemp, -inc_inv, fy, jthCol);
y_data[j] = yjsaved;
}
N_VDISPOSE(jthCol);
/* Increment counter nfe = *nfePtr */
*nfePtr += N;
}
/* Readability Replacements */
#define N (cv_mem->cv_N)
#define lmm (cv_mem->cv_lmm)
#define f (cv_mem->cv_f)
#define f_data (cv_mem->cv_f_data)
#define uround (cv_mem->cv_uround)
#define nst (cv_mem->cv_nst)
#define tn (cv_mem->cv_tn)
#define h (cv_mem->cv_h)
#define gamma (cv_mem->cv_gamma)
#define gammap (cv_mem->cv_gammap)
#define gamrat (cv_mem->cv_gamrat)
#define ewt (cv_mem->cv_ewt)
#define nfe (cv_mem->cv_nfe)
#define errfp (cv_mem->cv_errfp)
#define iopt (cv_mem->cv_iopt)
#define linit (cv_mem->cv_linit)
#define lsetup (cv_mem->cv_lsetup)
#define lsolve (cv_mem->cv_lsolve)
#define lfree (cv_mem->cv_lfree)
#define lmem (cv_mem->cv_lmem)
#define jac (cvdense_mem->d_jac)
#define M (cvdense_mem->d_M)
#define pivots (cvdense_mem->d_pivots)
#define savedJ (cvdense_mem->d_savedJ)
#define nstlj (cvdense_mem->d_nstlj)
#define nje (cvdense_mem->d_nje)
#define J_data (cvdense_mem->d_J_data)
/*************** CVDense *********************************************
This routine initializes the memory record and sets various function
fields specific to the dense linear solver module. CVDense sets the
cv_linit, cv_lsetup, cv_lsolve, and cv_lfree fields in (*cvode_mem)
to be CVDenseInit, CVDenseSetup, CVDenseSolve, and CVDenseFree,
respectively. It allocates memory for a structure of type
CVDenseMemRec and sets the cv_lmem field in (*cvode_mem) to the
address of this structure. Finally, it sets d_J_data field in the
CVDenseMemRec structure to be the input parameter jac_data and the
d_jac field to be:
(1) the input parameter djac if djac != NULL or
(2) CVDenseDQJac if djac == NULL.
**********************************************************************/
void CVDense(void *cvode_mem, CVDenseJacFn djac, void *jac_data)
{
CVodeMem cv_mem;
CVDenseMem cvdense_mem;
/* Return immediately if cvode_mem is NULL */
cv_mem = (CVodeMem) cvode_mem;
if (cv_mem == NULL) return; /* CVode reports this error */
/* Set four main function fields in cv_mem */
linit = CVDenseInit;
lsetup = CVDenseSetup;
lsolve = CVDenseSolve;
lfree = CVDenseFree;
/* Get memory for CVDenseMemRec */
lmem = cvdense_mem = (CVDenseMem) malloc(sizeof(CVDenseMemRec));
if (cvdense_mem == NULL) return; /* CVDenseInit reports this error */
/* Set Jacobian routine field to user's djac or CVDenseDQJac */
if (djac == NULL) {
jac = CVDenseDQJac;
} else {
jac = djac;
}
J_data = jac_data;
}
/*************** CVDenseInit *****************************************
This routine initializes remaining memory specific to the dense
linear solver. If any memory request fails, all memory previously
allocated is freed, and an error message printed, before returning.
**********************************************************************/
static int CVDenseInit(CVodeMem cv_mem, bool *setupNonNull)
{
CVDenseMem cvdense_mem;
cvdense_mem = (CVDenseMem) lmem;
/* Print error message and return if cvdense_mem is NULL */
if (cvdense_mem == NULL) {
fprintf(errfp, MSG_MEM_FAIL);
return(LINIT_ERR);
}
/* Set flag setupNonNull = TRUE */
*setupNonNull = TRUE;
/* Allocate memory for M, savedJ, and pivot array */
M = DenseAllocMat(N);
if (M == NULL) {
fprintf(errfp, MSG_MEM_FAIL);
return(LINIT_ERR);
}
savedJ = DenseAllocMat(N);
if (savedJ == NULL) {
fprintf(errfp, MSG_MEM_FAIL);
DenseFreeMat(M);
return(LINIT_ERR);
}
pivots = DenseAllocPiv(N);
if (pivots == NULL) {
fprintf(errfp, MSG_MEM_FAIL);
DenseFreeMat(M);
DenseFreeMat(savedJ);
return(LINIT_ERR);
}
/* Initialize nje and nstlj, and set workspace lengths */
nje = 0;
if (iopt != NULL) {
iopt[DENSE_NJE] = nje;
iopt[DENSE_LRW] = 2*N*N;
iopt[DENSE_LIW] = N;
}
nstlj = 0;
return(LINIT_OK);
}
/*************** CVDenseSetup ****************************************
This routine does the setup operations for the dense linear solver.
It makes a decision whether or not to call the Jacobian evaluation
routine based on various state variables, and if not it uses the
saved copy. In any case, it constructs the Newton matrix
M = I - gamma*J, updates counters, and calls the dense LU
factorization routine.
**********************************************************************/
static int CVDenseSetup(CVodeMem cv_mem, int convfail, N_Vector ypred,
N_Vector fpred, bool *jcurPtr, N_Vector vtemp1,
N_Vector vtemp2, N_Vector vtemp3)
{
bool jbad, jok;
real dgamma;
integer ier;
CVDenseMem cvdense_mem;
cvdense_mem = (CVDenseMem) lmem;
/* Use nst, gamma/gammap, and convfail to set J eval. flag jok */
dgamma = ABS((gamma/gammap) - ONE);
jbad = (nst == 0) || (nst > nstlj + CVD_MSBJ) ||
((convfail == FAIL_BAD_J) && (dgamma < CVD_DGMAX)) ||
(convfail == FAIL_OTHER);
jok = !jbad;
if (jok) {
/* If jok = TRUE, use saved copy of J */
*jcurPtr = FALSE;
DenseCopy(savedJ, M);
} else {
/* If jok = FALSE, call jac routine for new J value */
nje++;
if (iopt != NULL) iopt[DENSE_NJE] = nje;
nstlj = nst;
*jcurPtr = TRUE;
DenseZero(M);
jac(N, M, f, f_data, tn, ypred, fpred, ewt, h,
uround, J_data, &nfe, vtemp1, vtemp2, vtemp3);
DenseCopy(M, savedJ);
}
/* Scale and add I to get M = I - gamma*J */
DenseScale(-gamma, M);
DenseAddI(M);
/* Do LU factorization of M */
ier = DenseFactor(M, pivots);
/* Return 0 if the LU was complete; otherwise return 1 */
if (ier > 0) return(1);
return(0);
}
/*************** CVDenseSolve ****************************************
This routine handles the solve operation for the dense linear solver
by calling the dense backsolve routine. The returned value is 0.
**********************************************************************/
static int CVDenseSolve(CVodeMem cv_mem, N_Vector b, N_Vector ycur,
N_Vector fcur)
{
CVDenseMem cvdense_mem;
cvdense_mem = (CVDenseMem) lmem;
DenseBacksolve(M, pivots, b);
/* If BDF, scale the correction to account for change in gamma */
if ((lmm == BDF) && (gamrat != ONE)) {
N_VScale(TWO/(ONE + gamrat), b, b);
}
return(0);
}
/*************** CVDenseFree *****************************************
This routine frees memory specific to the dense linear solver.
**********************************************************************/
static void CVDenseFree(CVodeMem cv_mem)
{
CVDenseMem cvdense_mem;
cvdense_mem = (CVDenseMem) lmem;
DenseFreeMat(M);
DenseFreeMat(savedJ);
DenseFreePiv(pivots);
free(lmem);
}
|