1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
#include "delay_handle.h"
#include "parserslow.h"
#include "ggets.h"
#include "integrate.h"
#include <stdlib.h>
/* This handles the delay stuff */
#include <stdio.h>
#include <math.h>
#include "xpplim.h"
#include "getvar.h"
double AlphaMax=2,OmegaMax=2;
double *DelayWork;
int LatestDelay;
int MaxDelay;
int DelayFlag=0;
int NDelay,del_stab_flag,WhichDelay,DelayGrid=1000;
double variable_shift[2][MAXODE];
double delay_list[MAXDELAY];
double evaluate();
extern double DELTA_T,T0,DELAY;
extern int NODE,NCON,NSYM,NSYM_START,NCON_START,NMarkov;
extern char delay_string[MAXODE][80];
extern double variables[];
extern int NVAR;
double delay_stab_eval(delay,var)
/* this returns appropriate values for delay jacobian */
double delay;
int var;
{
int i;
if(del_stab_flag==0) /* search for all delays */
{
for(i=0;i<NDelay;i++){
if(delay==delay_list[i])
return(GETVAR(var));
}
delay_list[NDelay]=delay;
NDelay++;
return(GETVAR(var));
}
/* now we must determine the value to return */
/* del_stab_flag =-1 */
for(i=0;i<NDelay;i++){
if(delay==delay_list[i])
if(i==WhichDelay)
return variable_shift[1][var-1];
}
return variable_shift[0][var-1];
}
int alloc_delay(big)
double big;
{
int n,i;
n=(int)(big/fabs(DELTA_T))+1;
MaxDelay=n;
LatestDelay=1;
DelayFlag=0;
DelayWork=(double *)calloc(n*(NODE ),sizeof(double));
if(DelayWork==NULL){
err_msg("Could not allocate memory for Delay");
return(0);
}
DelayFlag=1;
NDelay=0;
WhichDelay=-1;
del_stab_flag=1;
for(i=0;i<n*(NODE );i++)DelayWork[i]=0.0;
return(1);
}
void free_delay()
{
if(DelayFlag)free(DelayWork);
DelayFlag=0;
}
void stor_delay(y)
double *y;
{
int i,in;
int nodes=NODE;
if(DelayFlag==0)return;
--LatestDelay;
if(LatestDelay<0)LatestDelay+=MaxDelay;
in=LatestDelay*(nodes );
for(i=0;i<(nodes );i++)DelayWork[i+in]=y[i];
}
double get_delay_old(in,tau)
int in;
double tau;
{
double x=tau/fabs(DELTA_T);
int n1=(int)x;
int n2=n1+1;
int nodes=NODE;
int i1,i2;
double x1,x2;
if(tau<0.0||tau>DELAY){
err_msg("Delay negative or too large");
stop_integration();
return(0.0);
}
i1=(n1+LatestDelay)%MaxDelay;
i2=(n2+LatestDelay)%MaxDelay;
x1=DelayWork[in+(nodes )*i1];
x2=DelayWork[in+(nodes )*i2];
return(x1+(x-n1)*(x2-x1));
}
void polint(xa,ya,n,x,y,dy)
double *ya,*xa,*y,*dy,x;
int n;
{
int i,m,ns=1;
double den,dif,dift,h0,hp,w;
double c[10],d[10];
dif=fabs(x-xa[0]);
for(i=1;i<=n;i++){
if( (dift=fabs(x-xa[i-1]))<dif){
ns=i;
dif=dift;
}
c[i-1]=ya[i-1];
d[i-1]=ya[i-1];
}
*y=ya[(ns--) -1];
for(m=1;m<n;m++){
for(i=1;i<=n-m;i++){
h0=xa[i-1]-x;
hp=xa[i+m-1]-x;
w=c[i]-d[i-1];
if((den=h0-hp)==0.0)return ;
den=w/den;
d[i-1]=hp*den;
c[i-1]=h0*den;
}
*y += (*dy=(2*ns < (n-m) ? c[ns]:d[ns-- -1]));
}
}
/* this is like get_delay but uses cubic interpolation */
double get_delay(in,tau)
int in;
double tau;
{
double x=tau/fabs(DELTA_T);
double dd=fabs(DELTA_T);
double y,ya[4],xa[4],dy;
int n1=(int)x;
int n2=n1+1;
int nodes=NODE;
int n0=n1;
int n3=n2+1;
int i0,i1,i2,i3;
if(tau<0.0||tau>DELAY){
err_msg("Delay negative or too large");
stop_integration();
return(0.0);
}
if(tau==0.0) /* check fro zero delay and ignore the rest */
return DelayWork[in+nodes*(LatestDelay%MaxDelay)];
xa[1]=n1*dd;
xa[0]=xa[1]-dd;
xa[2]=xa[1]+dd;
xa[3]=xa[2]+dd;
i1=(n1+LatestDelay)%MaxDelay;
i2=(n2+LatestDelay)%MaxDelay;
i0=(n0+LatestDelay)%MaxDelay;
i3=(n3+LatestDelay)%MaxDelay;
if(i1<0)i1+=MaxDelay;
if(i2<0)i2+=MaxDelay;
if(i3<0)i3+=MaxDelay;
if(i0<0)i0+=MaxDelay;
ya[1]=DelayWork[in+(nodes )*i1];
ya[2]=DelayWork[in+(nodes )*i2];
ya[0]=DelayWork[in+(nodes )*i0];
ya[3]=DelayWork[in+(nodes )*i3];
polint(xa,ya,4,tau,&y,&dy);
return(y);
}
/* Handling of the initial data */
int do_init_delay(big)
double big;
{
double t=T0,old_t,y[MAXODE];
int i,nt,j;
int len;
int *del_form[MAXODE];
nt=(int)(big/fabs(DELTA_T));
NCON=NCON_START;
NSYM=NSYM_START;
for(i=0;i<(NODE );i++){
del_form[i]=(int *)calloc(200,sizeof(int));
if(del_form[i]==NULL){
err_msg("Failed to allocate delay formula ...");
for(j=0;j<i;j++)free(del_form[j]);
NCON=NCON_START;
NSYM=NSYM_START;
return(0);
}
if(add_expr(delay_string[i],del_form[i],&len)){
err_msg("Illegal delay expression");
for(j=0;j<=i;j++)free(del_form[j]);
NCON=NCON_START;
NSYM=NSYM_START;
return(0);
}
} /* Okay all formulas are cool... */
LatestDelay=1;
get_val("t",&old_t);
for(i=nt;i>=0;i--){
t=T0-fabs(DELTA_T)*i;
set_val("t",t);
for(j=0;j<(NODE );j++)
y[j]=evaluate(del_form[j]);
stor_delay(y);
}
for(j=0;j<(NODE );j++)free(del_form[j]);
NCON=NCON_START;
NSYM=NSYM_START;
set_val("t",old_t);
return(1);
}
|