1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
/******************************************************************
* *
* File : dense.h *
* Programmers : Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
* Last Modified : 1 September 1994 *
*----------------------------------------------------------------*
* This is the header file for a generic DENSE linear solver *
* package. There are two sets of dense solver routines listed in *
* this file: one set uses type DenseMat defined below and the *
* other set uses the type real ** for dense matrix arguments. *
* The two sets of dense solver routines make it easy to work *
* with two types of dense matrices: *
* *
* (1) The DenseMat type is intended for use with large dense *
* matrices whose elements/columns may be stored in *
* non-contiguous memory locations or even distributed into *
* different processor memories. This type may be modified to *
* include such distribution information. If this is done, *
* then all the routines that use DenseMat must be modified *
* to reflect the new data structure. *
* *
* (2) The set of routines that use real ** (and NOT the DenseMat *
* type) is intended for use with small matrices which can *
* easily be allocated within a contiguous block of memory *
* on a single processor. *
* *
* Routines that work with the type DenseMat begin with "Dense". *
* The DenseAllocMat function allocates a dense matrix for use in *
* the other DenseMat routines listed in this file. Matrix *
* storage details are given in the documentation for the type *
* DenseMat. The DenseAllocPiv function allocates memory for *
* pivot information. The storage allocated by DenseAllocMat and *
* DenseAllocPiv is deallocated by the routines DenseFreeMat and *
* DenseFreePiv, respectively. The DenseFactor and DenseBacksolve *
* routines perform the actual solution of a dense linear system. *
* Note that the DenseBacksolve routine has a parameter b of type *
* N_Vector. The current implementation makes use of a machine *
* environment-specific macro (N_VDATA) which may not exist for *
* other implementations of the type N_Vector. Thus, the *
* implementation of DenseBacksolve may need to change if the *
* type N_Vector is changed. *
* *
* Routines that work with real ** begin with "den" (except for *
* the factor and solve routines which are called gefa and gesl, *
* respectively). The underlying matrix storage is described in *
* the documentation for denalloc. *
* *
******************************************************************/
#ifndef _dense_h
#define _dense_h
#include "llnltyps.h"
#include "vector.h"
/******************************************************************
* *
* Type: DenseMat *
*----------------------------------------------------------------*
* The type DenseMat is defined to be a pointer to a structure *
* with a size and a data field. The size field indicates the *
* number of columns (== number of rows) of a dense matrix, while *
* the data field is a two dimensional array used for component *
* storage. The elements of a dense matrix are stored columnwise *
* (i.e columns are stored one on top of the other in memory). If *
* A is of type DenseMat, then the (i,j)th element of A (with *
* 0 <= i,j <= size-1) is given by the expression (A->data)[j][i] *
* or by the expression (A->data)[0][j*n+i]. The macros below *
* allow a user to access efficiently individual matrix *
* elements without writing out explicit data structure *
* references and without knowing too much about the underlying *
* element storage. The only storage assumption needed is that *
* elements are stored columnwise and that a pointer to the jth *
* column of elements can be obtained via the DENSE_COL macro. *
* Users should use these macros whenever possible. *
* *
******************************************************************/
typedef struct {
integer size;
real **data;
} *DenseMat;
/* DenseMat accessor macros */
/******************************************************************
* *
* Macro : DENSE_ELEM *
* Usage : DENSE_ELEM(A,i,j) = a_ij; OR *
* a_ij = DENSE_ELEM(A,i,j); *
*----------------------------------------------------------------*
* DENSE_ELEM(A,i,j) references the (i,j)th element of the N by N *
* DenseMat A, 0 <= i,j <= N-1. *
* *
******************************************************************/
#define DENSE_ELEM(A,i,j) ((A->data)[j][i])
/******************************************************************
* *
* Macro : DENSE_COL *
* Usage : col_j = DENSE_COL(A,j); *
*----------------------------------------------------------------*
* DENSE_COL(A,j) references the jth column of the N by N *
* DenseMat A, 0 <= j <= N-1. The type of the expression *
* DENSE_COL(A,j) is real *. After the assignment in the usage *
* above, col_j may be treated as an array indexed from 0 to N-1. *
* The (i,j)th element of A is referenced by col_j[i]. *
* *
******************************************************************/
#define DENSE_COL(A,j) ((A->data)[j])
/* Functions that use the DenseMat representation for a dense matrix */
/******************************************************************
* *
* Function : DenseAllocMat *
* Usage : A = DenseAllocMat(N); *
* if (A == NULL) ... memory request failed *
*----------------------------------------------------------------*
* DenseAllocMat allocates memory for an N by N dense matrix and *
* returns the storage allocated (type DenseMat). DenseAllocMat *
* returns NULL if the request for matrix storage cannot be *
* satisfied. See the above documentation for the type DenseMat *
* for matrix storage details. *
* *
******************************************************************/
DenseMat DenseAllocMat(integer N);
/******************************************************************
* *
* Function : DenseAllocPiv *
* Usage : p = DenseAllocPiv(N); *
* if (p == NULL) ... memory request failed *
*----------------------------------------------------------------*
* DenseAllocPiv allocates memory for pivot information to be *
* filled in by the DenseFactor routine during the factorization *
* of an N by N dense matrix. The underlying type for pivot *
* information is an array of N integers and this routine returns *
* the pointer to the memory it allocates. If the request for *
* pivot storage cannot be satisfied, DenseAllocPiv returns NULL. *
* *
******************************************************************/
integer *DenseAllocPiv(integer N);
/******************************************************************
* *
* Function : DenseFactor *
* Usage : ier = DenseFactor(A, p); *
* if (ier != 0) ... A is singular *
*----------------------------------------------------------------*
* DenseFactor performs the LU factorization of the N by N dense *
* matrix A. This is done using standard Gaussian elimination *
* with partial pivoting. *
* *
* A successful LU factorization leaves the matrix A and the *
* pivot array p with the following information: *
* *
* (1) p[k] contains the row number of the pivot element chosen *
* at the beginning of elimination step k, k=0, 1, ..., N-1. *
* *
* (2) If the unique LU factorization of A is given by PA = LU, *
* where P is a permutation matrix, L is a lower triangular *
* matrix with all 1's on the diagonal, and U is an upper *
* triangular matrix, then the upper triangular part of A *
* (including its diagonal) contains U and the strictly lower *
* triangular part of A contains the multipliers, I-L. *
* *
* DenseFactor returns 0 if successful. Otherwise it encountered *
* a zero diagonal element during the factorization. In this case *
* it returns the column index (numbered from one) at which *
* it encountered the zero. *
* *
******************************************************************/
integer DenseFactor(DenseMat A, integer *p);
/******************************************************************
* *
* Function : DenseBacksolve *
* Usage : DenseBacksolve(A, p, b); *
*----------------------------------------------------------------*
* DenseBacksolve solves the N-dimensional system A x = b using *
* the LU factorization in A and the pivot information in p *
* computed in DenseFactor. The solution x is returned in b. This *
* routine cannot fail if the corresponding call to DenseFactor *
* did not fail. *
* *
******************************************************************/
void DenseBacksolve(DenseMat A, integer *p, N_Vector b);
/******************************************************************
* *
* Function : DenseZero *
* Usage : DenseZero(A); *
*----------------------------------------------------------------*
* DenseZero sets all the elements of the N by N matrix A to 0.0. *
* *
******************************************************************/
void DenseZero(DenseMat A);
/******************************************************************
* *
* Function : DenseCopy *
* Usage : DenseCopy(A, B); *
*----------------------------------------------------------------*
* DenseCopy copies the contents of the N by N matrix A into the *
* N by N matrix B. *
* *
******************************************************************/
void DenseCopy(DenseMat A, DenseMat B);
/******************************************************************
* *
* Function: DenseScale *
* Usage : DenseScale(c, A); *
*----------------------------------------------------------------*
* DenseScale scales the elements of the N by N matrix A by the *
* constant c and stores the result back in A. *
* *
******************************************************************/
void DenseScale(real c, DenseMat A);
/******************************************************************
* *
* Function : DenseAddI *
* Usage : DenseAddI(A); *
*----------------------------------------------------------------*
* DenseAddI adds the identity matrix to A and stores the result *
* back in A. *
* *
******************************************************************/
void DenseAddI(DenseMat A);
/******************************************************************
* *
* Function : DenseFreeMat *
* Usage : DenseFreeMat(A); *
*----------------------------------------------------------------*
* DenseFreeMat frees the memory allocated by DenseAllocMat for *
* the N by N matrix A. *
* *
******************************************************************/
void DenseFreeMat(DenseMat A);
/******************************************************************
* *
* Function : DenseFreePiv *
* Usage : DenseFreePiv(p); *
*----------------------------------------------------------------*
* DenseFreePiv frees the memory allocated by DenseAllocPiv for *
* the pivot information array p. *
* *
******************************************************************/
void DenseFreePiv(integer *p);
/******************************************************************
* *
* Function : DensePrint *
* Usage : DensePrint(A); *
*----------------------------------------------------------------*
* This routine prints the N by N dense matrix A to standard *
* output as it would normally appear on paper. It is intended *
* as a debugging tool with small values of N. The elements are *
* printed using the %g option. A blank line is printed before *
* and after the matrix. *
* *
******************************************************************/
void DensePrint(DenseMat A);
/* Functions that use the real ** representation for a dense matrix */
/******************************************************************
* *
* Function : denalloc *
* Usage : real **a; *
* a = denalloc(n); *
* if (a == NULL) ... memory request failed *
*----------------------------------------------------------------*
* denalloc(n) allocates storage for an n by n dense matrix. It *
* returns a pointer to the newly allocated storage if *
* successful. If the memory request cannot be satisfied, then *
* denalloc returns NULL. The underlying type of the dense matrix *
* returned is real **. If we allocate a dense matrix real **a by *
* a = denalloc(n), then a[j][i] references the (i,j)th element *
* of the matrix a, 0 <= i,j <= n-1, and a[j] is a pointer to the *
* first element in the jth column of a. The location a[0] *
* contains a pointer to n^2 contiguous locations which contain *
* the elements of a. *
* *
******************************************************************/
real **denalloc(integer n);
/******************************************************************
* *
* Function : denallocpiv *
* Usage : integer *pivot; *
* pivot = denallocpiv(n); *
* if (pivot == NULL) ... memory request failed *
*----------------------------------------------------------------*
* denallocpiv(n) allocates an array of n integers. It returns a *
* pointer to the first element in the array if successful. It *
* returns NULL if the memory request could not be satisfied. *
* *
******************************************************************/
integer *denallocpiv(integer n);
/******************************************************************
* *
* Function : gefa *
* Usage : integer ier; *
* ier = gefa(a,n,p); *
* if (ier > 0) ... zero element encountered during *
* the factorization *
*----------------------------------------------------------------*
* gefa(a,n,p) factors the n by n dense matrix a. It overwrites *
* the elements of a with its LU factors and keeps track of the *
* pivot rows chosen in the pivot array p. *
* *
* A successful LU factorization leaves the matrix a and the *
* pivot array p with the following information: *
* *
* (1) p[k] contains the row number of the pivot element chosen *
* at the beginning of elimination step k, k=0, 1, ..., n-1. *
* *
* (2) If the unique LU factorization of a is given by Pa = LU, *
* where P is a permutation matrix, L is a lower triangular *
* matrix with all 1's on the diagonal, and U is an upper *
* triangular matrix, then the upper triangular part of a *
* (including its diagonal) contains U and the strictly lower *
* triangular part of a contains the multipliers, I-L. *
* *
* gefa returns 0 if successful. Otherwise it encountered a zero *
* diagonal element during the factorization. In this case it *
* returns the column index (numbered from one) at which it *
* encountered the zero. *
* *
******************************************************************/
integer gefa(real **a, integer n, integer *p);
/******************************************************************
* *
* Function : gesl *
* Usage : real *b; *
* ier = gefa(a,n,p); *
* if (ier == 0) gesl(a,n,p,b); *
*----------------------------------------------------------------*
* gesl(a,n,p,b) solves the n by n linear system ax = b. It *
* assumes that a has been LU factored and the pivot array p has *
* been set by a successful call to gefa(a,n,p). The solution x *
* is written into the b array. *
* *
******************************************************************/
void gesl(real **a, integer n, integer *p, real *b);
/******************************************************************
* *
* Function : denzero *
* Usage : denzero(a,n); *
*----------------------------------------------------------------*
* denzero(a,n) sets all the elements of the n by n dense matrix *
* a to be 0.0. *
* *
******************************************************************/
void denzero(real **a, integer n);
/******************************************************************
* *
* Function : dencopy *
* Usage : dencopy(a,b,n); *
*----------------------------------------------------------------*
* dencopy(a,b,n) copies the n by n dense matrix a into the *
* n by n dense matrix b. *
* *
******************************************************************/
void dencopy(real **a, real **b, integer n);
/******************************************************************
* *
* Function : denscale *
* Usage : denscale(c,a,n); *
*----------------------------------------------------------------*
* denscale(c,a,n) scales every element in the n by n dense *
* matrix a by c. *
* *
******************************************************************/
void denscale(real c, real **a, integer n);
/******************************************************************
* *
* Function : denaddI *
* Usage : denaddI(a,n); *
*----------------------------------------------------------------*
* denaddI(a,n) increments the n by n dense matrix a by the *
* identity matrix. *
* *
******************************************************************/
void denaddI(real **a, integer n);
/******************************************************************
* *
* Function : denfreepiv *
* Usage : denfreepiv(p); *
*----------------------------------------------------------------*
* denfreepiv(p) frees the pivot array p allocated by *
* denallocpiv. *
* *
******************************************************************/
void denfreepiv(integer *p);
/******************************************************************
* *
* Function : denfree *
* Usage : denfree(a); *
*----------------------------------------------------------------*
* denfree(a) frees the dense matrix a allocated by denalloc. *
* *
******************************************************************/
void denfree(real **a);
/******************************************************************
* *
* Function : denprint *
* Usage : denprint(a,n); *
*----------------------------------------------------------------*
* denprint(a,n) prints the n by n dense matrix a to standard *
* output as it would normally appear on paper. It is intended as *
* a debugging tool with small values of n. The elements are *
* printed using the %g option. A blank line is printed before *
* and after the matrix. *
* *
******************************************************************/
void denprint(real **a, integer n);
#endif
|