1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
<html>
<head>
<title>XPP - EXAMPLES</title>
</head>
<body bgcolor="#ffffff" link="#330099" alink="#FF3300" vlink="#330099">
<a href="xpphelp.html">Contents</a>
<hr>
<center> <h1>Examples</h1> </center>
<h4> <a href=#ode> Systems of ODEs </a> </h4>
<h4> <a href=#ode2> Higher order ODEs </a> </h4>
<h4> <a href=#map> Maps and difference equations</a> </h4>
<h4> <a href=#delay> Delay equations </a> </h4>
<h4> <a href=#dae> Differential-algebraic equations </a> </h4>
<h4> <a href=#int> Volterra equations </a> </h4>
<h4> <a href=#ran> Markov models</a> </h4>
<h4> <a href=#disc> Delta functions </a> </h4>
<h4> <a href=#bdry> Boundary value problems </a> </h4>
<h4> <a href=#pde> Discretized PDEs</a> </h4>
<h4> <a href=#net> Spatial networks </a> </h4>
<hr>
<ul>
<li> <a name=ode> <h3> Differential equation </h3> </a>
Here is the Wilson-Cowan equation:
<p> <font size=+1 color=#993300>
<i> u' = -u+f(a<sub>ee</sub>u-a<sub>ie</sub>v-z<sub>e</sub> + I<sub>e</sub>(t) )
<br>
v' = (-v+f(a<sub>ei</sub>u-a<sub>ii</sub>v-z<sub>i</sub> + I<sub>i</sub>(t) ))/tau <p>
</i> </font>
and here is the corresponding ODE file:
<font size=+1 color=#CC33CC> <pre>
# wilson-cowan
f(u)=1/(1+exp(-u))
par aee=10,aie=8,aei=12,aii=3,ze=.2,zi=4
par tau=1
i_e(t)=ie0+ie1*sin(w*t)
i_i(t)=ii0+ii1*sin(w*t)
par ie0=0,ie1=0,w=.25
par ii0=0,ii1=0
init u=.1,v=.05
u'=-u+f(aee*u-aie*v-ze+i_e(t))
v'=(-v+f(aei*u-aii*v-zi+i_i(t)))/tau
@ total=40
@ xp=u,yp=v,xlo=-.1,xhi=1,ylo=-.1,yhi=1
done
</pre></font>
I have added definitions for the inputs and the function <b>f</b> as
well as default initial data and parameters. I also set it up so that
the initial window is the phaseplane.
<p><hr>
<li> <a name=ode2> <h3> Higher order differential equations </h3> </a>
XPP cannot solve higher order equations. You must first write them as
a system of first order equations. For example, the third order
equation:
<font size=+1 color=#99330> <p><i>
x''' + a x'' + b x' + c x = x<sup>2</sup> <p></i>
</font>
should be rewritten as
<font size=+1 color=#99330> <p><i>
x' = y <br>
y' = z <br>
z' = x<sup>2</sup> - a z -b y -c x <p> </i> </font>
with the corresponding ODE file
<font color=#CC33CC> <pre>
# third.ode
x'=y
y'=z
z'=x^2-a*z-b*y-c*x
par a=1,b=2,c=3.7
init x=1,y=0,z=0
aux en=x^2+y^2+z^2
@ total=200
@ xp=x,yp=y,xlo=-2,xhi=5,ylo=-4,yhi=5
done
</pre></font>
I have set the plotting parameters and integration time. I have also
added another quantity <b> en </b> which is stored and can be plotted
as well.
<p>
<hr>
<li><a name=map> <h3> Difference equation or maps </h3> </a>
The example is the delayed logistic map
<p> <font size=+1 color=#993300>
<i>
x<sub>n+1</sub> = a x<sub>n-1</sub>(1-x<sub>n</sub>)
</i>
<p> </font>
This is a second order map and XPP can only solve first order
equations. We write it as a pair of first order equations:
<p> <font size=+1 color=#993300>
<i>
x<sub>n+1</sub> = y<sub>n</sub> <br>
y<sub>n+1</sub> = a y<sub>n</sub>(1-x<sub>n</sub>)
</i>
<p></font>
and get the corresponding ODE file:
<font color=#CC33CC> <pre>
# delayed logistic map
x'=y
y'=a*y*(1-x)
par a=2.2
init x=.2,y=.2
# set method to discrete
@ meth=discrete
@ total=100
@ ylo=-.1,yhi=1,xhi=100
done
</pre>
</font>
Here the most important thing is that I tell XPP that this is a
discrete dynamical system.
<p>
<hr>
<li> <a name=delay>
<h3> Delay-differential equation </h3> </a>
XPP can solve delay equations with one or more delays. Here is a delay
equation due to Mike Mackey and Leon Glass:
<p> <font size=+1 color=#993300> <i>
x'(t) = -g x(t) + b f(x(t-d)) <br>
f(x) = x/(1+x<sup>n</sup>) <p>
</i> </font>
Here is the ODE file:
<font color=#CC33CC> <pre>
# mackey-glass
f(x)=x/(1+x^n)
x'=-g*x+b*f(delay(x,d))
init x=.2
par g=.1,b=.2,n=10,d=6
@ delay=20
@ total=200
@ xhi=200,yhi=2
done
</pre></font>
I have told XPP that the maximal delay to expect is 20.
<p>
Delay equations with delay <b> d </b> require initial data on an
interval <b> -d < t < 0. </b> You can set these in the ODE file
by adding the line:
<font color=#CC33CC> <pre>
x(0)=exp(t)*0.2
</pre></font> which sets <b> x(t)=0.2e<sup>t</sup> </b> for <b> -d
< t < 0. </b> <p>
<b> NOTE </b> this does <i> not</i> set the initial condition for <b> x</b> at <b>t=0.</b> You can do this by adding one more line after the delayed condition:
<font color=#CC33CC> <pre>
x(0)=exp(t)*0.2
init x=.2
</pre></font>
<h4> Setting delay initial data within XPP </h4>
There is a window called <b> Delay ICs </b> which shows up in XPP and
you can use this to type in delay initial data. <font
color=#FF0000> Before integrating delay equations always click on the
<font color=#009900 size=+2> OK </font> button in the <b> Delay ICs
</b> window!</font> Otherwise, the delay initial data will not take effect.
<p>
<hr>
<li><a name=dae> <h3> Differential-algebraic equations </h3> </a>
Differential algebraic equations of the form:
<font size=+1 color=#993300> <p><i>
x' = F(x,y) <br>
0 = G(x,y) <p> </i> </font>
can be solved in XPP. The DAE
<font size=+1 color=#993300> <p><i>
x' = z<br>
z' = y <br>
0 = x+z+y+y^3 <p> </i> </font>
has an ODE file:
<pre> <font color=#CC33CC>
# dae.ode
x'=z
z'=y
0=x+z+y+y^3
solve y=-1
init x=2
aux ys=y
@ yhi=2.5
done
</pre></font>
You have to tell it which variables to solve for. In this case, we
solve for <b> y </b> as a function of <b> x,z </b>. You can give XPP a
guess about what the value of <b> y </b> is at the initial conditions
for <b> x,z.</b> I have added an additional quantity <b> ys </b> which
is the solution to the algebraic condition.
<p>
<hr>
<li><a name=int> <h3> Volterra integral equations </h3></a>
XPP solves both continuous
and singular integral equations. Here is a regular equation:
<font size=+1 color=#993300><p> <i>
u(t)=sin(t) + 0.5 cos(t)-0.5 e<sup>-t</sup>(t + 1) + int[u(t') (t-t')
e<sup>t'-t</sup>,t'=0..t]
</i> </font>
<p>
and here is the ODE file
<font color=#CC33CC> <pre>
# volterra example 1
u(t)=sin(t)+.5*cos(t)-.5*t*exp(-t)-.5*exp(-t)+int{(t-t')*exp(t'-t)*u}
aux utrue=sin(t)
done
</pre> </font>
I have included the true solution as well. This is actually a
convolution equation so that you and improve the speed by exploiting
that:
<font color=#CC33CC> <pre>
# volt2.ode - uses convolution to speed up soln
u(t)=sin(t)+.5*cos(t)-.5*t*exp(-t)-.5*exp(-t)+int{t*exp(-t)#u}
aux utrue=sin(t)
done
</pre></font>
<p>
Integro-differential equations are also possible:
<font size=+1 color=#993300><p> <i>
u'(t)=-2u+e<sup>-2t</sup> + int[u^2(t')e<sup>t'-t</sup>,t'=0..t]
</i> </font>
<p>
with <i> u(0)=1 </i> has a solution <i> u(t)=e<sup>-t</sup></i> as can
be confirmed with the ODE file
<font color=#CC33CC> <pre>
# nonlinear integrodifferential volterra equation
u'=-2*u+exp(-2*t)+int{exp(-t)#u^2}
init u=1
aux utrue=exp(-t)
done
</pre></font>
Finally, integral equations with singularities are easily solved. For
example
<font size=+1 color=#993300><p> <i>
u(t)=exp(-t)-int[e<sup>-(t-s)</sup>(t-s)<sup>-¼</sup>
u(s),s=0..t]
<p></i></font>
This has a removeable singularity in that the power of <b>t</b> is
less than 1. The ODE file has the form:
<font color=#CC33CC> <pre>
# singular integral equation
u(t)=exp(-t)-int[.25]{exp(-t)#sin(u)}
done
</pre>
</font>
<p>
<font size +3 color=#FF0000> WARNINGS </font>
<ol>
<li> The expression inside the <b>[ ]</b> must be a number and not a
parameter.
<li> Volterra integral equations cannot be edited inside XPP.
</ol>
<hr>
<li><a name=ran> <h3> Markov models </h3> </a>
XPP simulates random processes. Here is a stochastic ratchet:
<font size=+1 color=#993300><p> <i>
dx=z f(x) dt + s dW
<p> </i> </font>
The variable <b> z </b> randomly switches back and forth between 0 and
1 at rates <b> r<sub>0</sub>,r<sub>1</sub> </b> respectively. <b> dW
</b> is a Wiener process. The function <b>f(x)</b> is an asymmetric
periodic potential with zero mean. Here is the ODE file
<font color=#CC33CC> <pre>
# a simple thermal ratchet
wiener w
par a=.8,s=.05,r0=.1,r1=.1
f(x)=if(x<a)then(-1)else(a/(1-a))
x'=z*f(mod(x,1))+s*w
# z is two states
markov z 2
{0} {r0}
{r1} {0}
@ meth=euler,dt=.1,total=2000,nout=10
@ xhi=2000,yhi=8,ylo=-8
done
</pre></font>
The rates in a Markov process need not be constant but can depend on
any of the variables or parameters. <font color=#FF0000> Always use
Euler's method </font> for stochastic equations.
<p>
<hr>
<li><a name=disc> <h3> Delta functions and all that </h3> </a>
XPP has a way of dealing with delta-function discontinuities. XPP uses
<b> global </b> flags which check for events and act on variables
accordingly. Here is an equation due to John Tyson for the cell cycle:
<font size=+1 color=#993300><p> <i>
u' = k<sub>4</sub> (v-u)(a + u<sup>2</sup>) - k<sub>6</sub> <br>
v' = k<sub>1</sub> -k<sub>6</sub> u <br>
m' = b m <p></i></font>
with the condition that when <b>u</b> falls below <b>0.2</b> the mass
is halved. We tell XPP to look for crossings of <b>u</b> and to cut
the mass in half. Here is the ODE file
<font color=#CC33CC> <pre>
# tyson.ode
init u=.0075,v=.48,m=1
p k1=.015,k4=200,k6=2,a=.0001,b=.005
u'= k4*(v-u)*(a+u^2) - k6*u
v'= k1*m - k6*u
m'= b*m
global 1 {0.2-u} {m=.5*m}
@ total=1000,nout=10
@ yp=m,xhi=1000,ylo=0,yhi=2
done
</pre> </font>
<p>
<hr>
<li><a name=bdry> <h3> Boundary value problems </h3> </a>
Boundary value problems require that you satisfy conditions at both
ends of the integration interval. Consider the boundary value
problem:
<font size=+1 color=#993300><p> <i>
u'' = sin(t u) <br>
u(0)= 1 <br>
u(2) = 0 <p>
</i></font>
We rewrite this as a first order system:
<font size=+1 color=#993300><p> <i>
u' = v <br>
v' = sin(t u) <br>
u(0)= 1 <br>
u(2) = 0 <p>
</i></font>
Here is the ODE file for this:
<font color=#CC33CC> <pre>
# nonlinear boundary value problem
u'=v
v'=sin(t*u)
bdry u-1
bdry u'
init u=1,v=-1
@ total=2,bell=0,xhi=2
done
</pre> </font>
Boundary conditions take the form:
<font color=#CC33CC> <pre>
bdry F(u,u')
</pre> </font>
where <b>u'</b> represents the value of the variable at the end of the
interval. <i><font color=#FF0000> It is not the derivative in this
context!!</font> </i>
XPP tries to make the functions defined by each boundary condition
vanish. The length of the interval is the total amount of time
integrated.
Note that in this example, I have turned off the stinking
bell. <p>
You solve boundary value problems in XPP by using the <b> Bdryval </b>
menu item instead of the <b>Initialconds</b> item.
<p>
XPP can also solve systems with homoclinic orbits. See the manual for
an example.
<p>
<hr>
<li><a name=pde> <h3> Discretized PDEs </h3> </a>
XPP can make fake arrays of variables and save you from typing every
one. The Schnakenberg system is a classic model:
<font size=+1 color=#993300><p> <i>
u<sub>t</sub> = -u+vu<sup>2</sup>+d<sub>u</sub> u<sub>xx</sub> <br>
v<sub>t</sub> = a - vu<sup>2</sup>+d<sub>v</sub> v<sub>xx</sub>
<p>
</i> </font>
which we can discretize yielding:
<font size=+1 color=#993300><p> <i>
u'<sub>j</sub> = -u<sub>j</sub>+v<sub>j</sub>u<sup>2</sup><sub>j</sub>+(d<sub>u</sub>/h<sup>2</sup>) (u<sub>j+1</sub>-2 u<sub>j</sub>+u<sub>j-1</sub>) <br>
v'<sub>j</sub> = a - v<sub>j</sub>u<sup>2</sup><sub>j</sub>+(d<sub>v</sub>/h<sup>2</sup>) (v<sub>j+1</sub>-2 v<sub>j</sub>+v<sub>j-1</sub>)
<p>
</i> </font>
with appropriate end conditions. We will make this into an ODE file:
<font color=#CC33CC> <pre>
# schnakenberg PDE 100 points
f(u,v)=-u+v*u^2
g(u,v)=a-v*u^2
u0'=f(u0,v0)+duh*(u1-u0)
u[1..99]'=f(u[j],v[j])+duh*(u[j+1]-2*u[j]+u[j-1])
u100'=f(u100,v100)+duh*(u99-u100)
v0'=g(u0,v0)+dvh*(v1-v0)
v[1..99]'=g(u[j],v[j])+dvh*(v[j+1]-2*v[j]+v[j-1])
v100'=g(u100,v100)+dvh*(v99-v100)
par a=1.05,du=.2,dv=3,h=.2
!duh=du/(h*h)
!dvh=dv/(h*h)
init u0=1.5,u1=1.3,u2=1.1,v0=1.05,v1=1.05,v2=1.05
init u[3..100]=1.05,v[j]=1.05
@ dt=.1,nout=50,total=50,meth=cvode,tol=1e-5,atol=1e-5
done
</pre></font>
Note that I have defined the kinetics as a pair of functions. The
statements starting with the <b> ! </b> are derived parameters --
parameters which depend on other parameters. I use a stiff integrator
<b> CVODE </b>. Plot this using <a href=xpparray.html> array plots
</a> or look at the spatial profile with the <a
href=xppfile.html#trans> transpose </a> operation.
<p>
Take advantage of the banded quality of the system and speed up the
stiff integrators my an order of magnitude. You have to rearrange the
equations a bit. Here is the ODE file:
<font color=#CC33CC> <pre>
# schnakenberg PDE 100 points
# interlaced
f(u,v)=-u+v*u^2
g(u,v)=a-v*u^2
u0'=f(u0,v0)+duh*(u1-u0)
v0'=g(u0,v0)+dvh*(v1-v0)
%[1..99]
u[j]'=f(u[j],v[j])+duh*(u[j+1]-2*u[j]+u[j-1])
v[j]'=g(u[j],v[j])+dvh*(v[j+1]-2*v[j]+v[j-1])
%
u100'=f(u100,v100)+duh*(u99-u100)
v100'=g(u100,v100)+dvh*(v99-v100)
par a=1.05,du=5,dv=75,h=.2
!duh=du/(h*h)
!dvh=dv/(h*h)
init u0=1.5,u1=1.3,u2=1.1,v0=1.05,v1=1.05,v2=1.05
init u[3..100]=1.05,v[j]=1.05
@ dt=.1,nout=50,total=50,meth=cvode,tol=1e-5,atol=1e-5
@ bandlo=2,bandup=2
done
</pre></font>
I tell XPP the system is banded and interlace the two variables.
This runs significantly faster than
the previous ODE!
<p>
<hr>
<li> <a name=net><h3> Network problems and tables </h3> </a>
The last example is a solution to the Wilson-Cowan equations
distributed in space. We will solve:
<font size=+1 color=#993300><p> <i>
u'<sub>j</sub> = -u<sub>j</sub> + F(a<sub>ee</sub>K<sub>e,j</sub>
-a<sub>ie</sub> K<sub>i,j</sub>) <br>
v'<sub>j</sub> = (-v<sub>j</sub> + F(a<sub>ei</sub>K<sub>e,j</sub>
-a<sub>ii</sub> K<sub>i,j</sub>))/tau <p>
</i></font>
where
<font size=+1 color=#993300><p> <i>
K<sub>e,j</sub> = SUM(W<sub>e</sub>(k)u<sub>j-k</sub>,k=-m..m)<br>
K<sub>i,j</sub> = SUM(W<sub>i</sub>(k)u<sub>j-k</sub>,k=-m..m)<p>
</i> </font>
with some sort of "boundary" conditions at the edges. Here is an XPP file for a network of 201 cells and an exponential weight function:
<font color=#CC33CC> <pre>
# Wilson-Cowan network
table we % 51 -25 25 .5*exp(-abs(t)/se)/se
table wi % 51 -25 25 .5*exp(-abs(t)/si)/si
special ke=conv(even,201,25,we,u0)
special ki=conv(even,201,25,wi,v0)
par se=4,si=2.5
f(u)=1/(1+exp(-u))
par aee=16,aie=10,aei=25,aii=3,ze=4,zi=10
par tau=4
init u[0..4]=1
u[0..200]'=-u[j]+f(aee*ke([j])-aie*ki([j])-ze)
v[0..200]'=(-v[j]+f(aei*ke([j])-aii*ki([j])-zi))/tau
@ total=60,meth=qualrk,dt=.25
@ yp=u100,xhi=60,ylo=0
@ yp2=u150,nplot=2
done
</pre>
</font>
The weights are defined as tables which give the number of points in
the table, the x-range, and the functional form of the table. You can
also read a file to fill a table. Consult the documentation for
more. The <b> special </b> declaration convolves the values in the
tables with the variables. The <b> even </b> means that the ends are
reflected. Note that you must write <b> ke([j])</b>, that is the <b> [
] </b> must be included. I have also told XPP to plot two things, <b>
u100</b> and <b> u150.</b>
</ul>
|