1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
/******************************************************************
* *
* File : spgmr.c *
* Programmers : Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
* Last Modified : 1 September 1994 *
*----------------------------------------------------------------*
* This is the implementation file for the scaled preconditioned *
* GMRES (SPGMR) iterative linear solver. *
* *
******************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "iterativ.h"
#include "spgmr.h"
#include "llnltyps.h"
#include "vector.h"
#include "llnlmath.h"
#define ZERO RCONST(0.0)
#define ONE RCONST(1.0)
/*************** Private Helper Function Prototype *******************/
static void FreeVectorArray(N_Vector *A, int indMax);
/* Implementation of Spgmr algorithm */
/*************** SpgmrMalloc *****************************************/
SpgmrMem SpgmrMalloc(integer N, int l_max, void *machEnv)
{
SpgmrMem mem;
N_Vector *V, xcor, vtemp;
real **Hes, *givens, *yg;
int k, i;
/* Check the input parameters */
if ((N <= 0) || (l_max <= 0)) return(NULL);
/* Get memory for the Krylov basis vectors V[0], ..., V[l_max] */
V = (N_Vector *) malloc((l_max+1)*sizeof(N_Vector));
if (V == NULL) return(NULL);
for (k=0; k <= l_max; k++) {
V[k] = N_VNew(N, machEnv);
if (V[k] == NULL) {
FreeVectorArray(V, k-1);
return(NULL);
}
}
/* Get memory for the Hessenberg matrix Hes */
Hes = (real **) malloc((l_max+1)*sizeof(real *));
if (Hes == NULL) {
FreeVectorArray(V, l_max);
return(NULL);
}
for (k=0; k <= l_max; k++) {
Hes[k] = (real *) malloc(l_max*sizeof(real));
if (Hes[k] == NULL) {
for (i=0; i < k; i++) free(Hes[i]);
FreeVectorArray(V, l_max);
return(NULL);
}
}
/* Get memory for Givens rotation components */
givens = (real *) malloc(2*l_max*sizeof(real));
if (givens == NULL) {
for (i=0; i <= l_max; i++) free(Hes[i]);
FreeVectorArray(V, l_max);
return(NULL);
}
/* Get memory to hold the correction to z_tilde */
xcor = N_VNew(N, machEnv);
if (xcor == NULL) {
free(givens);
for (i=0; i <= l_max; i++) free(Hes[i]);
FreeVectorArray(V, l_max);
return(NULL);
}
/* Get memory to hold SPGMR y and g vectors */
yg = (real *) malloc((l_max+1)*sizeof(real));
if (yg == NULL) {
N_VFree(xcor);
free(givens);
for (i=0; i <= l_max; i++) free(Hes[i]);
FreeVectorArray(V, l_max);
return(NULL);
}
/* Get an array to hold a temporary vector */
vtemp = N_VNew(N, machEnv);
if (vtemp == NULL) {
free(yg);
N_VFree(xcor);
free(givens);
for (i=0; i <= l_max; i++) free(Hes[i]);
FreeVectorArray(V, l_max);
return(NULL);
}
/* Get memory for an SpgmrMemRec containing SPGMR matrices and vectors */
mem = (SpgmrMem) malloc(sizeof(SpgmrMemRec));
if (mem == NULL) {
N_VFree(vtemp);
free(yg);
N_VFree(xcor);
free(givens);
for (i=0; i <= l_max; i++) free(Hes[i]);
FreeVectorArray(V, l_max);
return(NULL);
}
/* Set the fields of mem */
mem->N = N;
mem->l_max = l_max;
mem->V = V;
mem->Hes = Hes;
mem->givens = givens;
mem->xcor = xcor;
mem->yg = yg;
mem->vtemp = vtemp;
/* Return the pointer to SPGMR memory */
return(mem);
}
/*************** SpgmrSolve ******************************************/
int SpgmrSolve(SpgmrMem mem, void *A_data, N_Vector x, N_Vector b,
int pretype, int gstype, real delta, int max_restarts,
void *P_data, N_Vector sx, N_Vector sb, ATimesFn atimes,
PSolveFn psolve, real *res_norm, int *nli, int *nps)
{
N_Vector *V, xcor, vtemp;
real **Hes, *givens, *yg;
/*real s_r0_norm, beta, rotation_product, r_norm, s_product, rho;*/
real beta, rotation_product, r_norm, s_product, rho=0.0;
bool preOnLeft, preOnRight, scale_x, scale_b, converged;
int i, j, k, l, l_plus_1, l_max, krydim=0, ier, ntries;
if (mem == NULL) return(SPGMR_MEM_NULL);
/* Make local copies of mem variables */
l_max = mem->l_max;
V = mem->V;
Hes = mem->Hes;
givens = mem->givens;
xcor = mem->xcor;
yg = mem->yg;
vtemp = mem->vtemp;
*nli = *nps = 0; /* Initialize counters */
converged = FALSE; /* Initialize converged flag */
if (max_restarts < 0) max_restarts = 0;
if ((pretype != LEFT) && (pretype != RIGHT) && (pretype != BOTH))
pretype = NONE;
preOnLeft = ((pretype == LEFT) || (pretype == BOTH));
preOnRight = ((pretype == RIGHT) || (pretype == BOTH));
scale_x = (sx != NULL);
scale_b = (sb != NULL);
/* Set vtemp and V[0] to initial (unscaled) residual r_0 = b - A*x_0 */
if (N_VDotProd(x, x) == ZERO) {
N_VScale(ONE, b, vtemp);
} else {
if (atimes(A_data, x, vtemp) != 0)
return(SPGMR_ATIMES_FAIL);
N_VLinearSum(ONE, b, -ONE, vtemp, vtemp);
}
N_VScale(ONE, vtemp, V[0]);
/* Apply b-scaling to vtemp, get L2 norm of sb r_0, and return if small */
/*
if (scale_b) N_VProd(sb, vtemp, vtemp);
s_r0_norm = RSqrt(N_VDotProd(vtemp, vtemp));
if (s_r0_norm <= delta) return(SPGMR_SUCCESS);
*/
/* Apply left preconditioner and b-scaling to V[0] = r_0 */
if (preOnLeft) {
ier = psolve(P_data, V[0], vtemp, LEFT);
(*nps)++;
if (ier != 0)
return((ier < 0) ? SPGMR_PSOLVE_FAIL_UNREC : SPGMR_PSOLVE_FAIL_REC);
} else {
N_VScale(ONE, V[0], vtemp);
}
if (scale_b) {
N_VProd(sb, vtemp, V[0]);
} else {
N_VScale(ONE, vtemp, V[0]);
}
/* Set r_norm = beta to L2 norm of V[0] = sb P1_inv r_0, and
return if small */
*res_norm = r_norm = beta = RSqrt(N_VDotProd(V[0], V[0]));
if (r_norm <= delta)
return(SPGMR_SUCCESS);
/* Set xcor = 0 */
N_VConst(ZERO, xcor);
/* Begin outer iterations: up to (max_restarts + 1) attempts */
for (ntries = 0; ntries <= max_restarts; ntries++) {
/* Initialize the Hessenberg matrix Hes and Givens rotation
product. Normalize the initial vector V[0]. */
for (i=0; i <= l_max; i++)
for (j=0; j < l_max; j++)
Hes[i][j] = ZERO;
rotation_product = ONE;
N_VScale(ONE/r_norm, V[0], V[0]);
/* Inner loop: generate Krylov sequence and Arnoldi basis */
for(l=0; l < l_max; l++) {
(*nli)++;
krydim = l_plus_1 = l + 1;
/* Generate A-tilde V[l], where A-tilde = sb P1_inv A P2_inv sx_inv */
/* Apply x-scaling: vtemp = sx_inv V[l] */
if (scale_x) {
N_VDiv(V[l], sx, vtemp);
} else {
N_VScale(ONE, V[l], vtemp);
}
/* Apply right precoditioner: vtemp = P2_inv sx_inv V[l] */
N_VScale(ONE, vtemp, V[l_plus_1]);
if (preOnRight) {
ier = psolve(P_data, V[l_plus_1], vtemp, RIGHT);
(*nps)++;
if (ier != 0)
return((ier < 0) ? SPGMR_PSOLVE_FAIL_UNREC : SPGMR_PSOLVE_FAIL_REC);
}
/* Apply A: V[l+1] = A P2_inv sx_inv V[l] */
if (atimes(A_data, vtemp, V[l_plus_1] ) != 0)
return(SPGMR_ATIMES_FAIL);
/* Apply left preconditioning: vtemp = P1_inv A P2_inv sx_inv V[l] */
if (preOnLeft) {
ier = psolve(P_data, V[l_plus_1], vtemp, LEFT);
(*nps)++;
if (ier != 0)
return((ier < 0) ? SPGMR_PSOLVE_FAIL_UNREC : SPGMR_PSOLVE_FAIL_REC);
} else {
N_VScale(ONE, V[l_plus_1], vtemp);
}
/* Apply b-scaling: V[l+1] = sb P1_inv A P2_inv sx_inv V[l] */
if (scale_b) {
N_VProd(sb, vtemp, V[l_plus_1]);
} else {
N_VScale(ONE, vtemp, V[l_plus_1]);
}
/* Orthogonalize V[l+1] against previous V[i]: V[l+1] = w_tilde. */
if (gstype == CLASSICAL_GS) {
if (ClassicalGS(V, Hes, l_plus_1, l_max, &(Hes[l_plus_1][l]),
vtemp, yg) != 0)
return(SPGMR_GS_FAIL);
} else {
if (ModifiedGS(V, Hes, l_plus_1, l_max, &(Hes[l_plus_1][l])) != 0)
return(SPGMR_GS_FAIL);
}
/* Update the QR factorization of Hes */
if(QRfact(krydim, Hes, givens, l) != 0 )
return(SPGMR_QRFACT_FAIL);
/* Update residual norm estimate; break if convergence test passes */
rotation_product *= givens[2*l+1];
if ((*res_norm = rho = ABS(rotation_product*r_norm)) <= delta) {
converged = TRUE;
break;
}
/* Normalize V[l+1] with norm value from the Gram-Schmidt */
N_VScale(ONE/Hes[l_plus_1][l], V[l_plus_1], V[l_plus_1]);
}
/* Inner loop is done. Compute the new correction vector xcor */
/* Construct g, then solve for y */
yg[0] = r_norm;
for (i=1; i <= krydim; i++) yg[i]=ZERO;
if (QRsol(krydim, Hes, givens, yg) != 0)
return(SPGMR_QRSOL_FAIL);
/* Add correction vector V_l y to xcor */
for (k=0; k < krydim; k++)
N_VLinearSum(yg[k], V[k], ONE, xcor, xcor);
/* If converged, construct the final solution vector x */
if (converged) {
/* Apply x-scaling and right precond.: vtemp = P2_inv sx_inv xcor */
if (scale_x) N_VDiv(xcor, sx, xcor);
if (preOnRight) {
ier = psolve(P_data, xcor, vtemp, RIGHT);
(*nps)++;
if (ier != 0)
return((ier < 0) ? SPGMR_PSOLVE_FAIL_UNREC : SPGMR_PSOLVE_FAIL_REC);
} else {
N_VScale(ONE, xcor, vtemp);
}
/* Add correction to initial x to get final solution x, and return */
N_VLinearSum(ONE, x, ONE, vtemp, x);
return(SPGMR_SUCCESS);
}
/* Not yet converged; if allowed, prepare for restart */
if (ntries == max_restarts) break;
/* Construct last column of Q in yg */
s_product = ONE;
for (i=krydim; i > 0; i--) {
yg[i] = s_product*givens[2*i-2];
s_product *= givens[2*i-1];
}
yg[0] = s_product;
/* Scale r_norm and yg */
r_norm *= s_product;
for (i=0; i <= krydim; i++)
yg[i] *= r_norm;
r_norm = ABS(r_norm);
/* Multiply yg by V_(krydim+1) to get last residual vector; restart */
N_VScale(yg[0], V[0], V[0]);
for( k=1; k <= krydim; k++)
N_VLinearSum(yg[k], V[k], ONE, V[0], V[0]);
}
/* Failed to converge, even after allowed restarts.
If the residual norm was reduced below its initial value, compute
and return x anyway. Otherwise return failure flag. */
if (rho < beta) {
/* Apply the x-scaling and right precond.: vtemp = P2_inv sx_inv xcor */
if (scale_x) N_VDiv(xcor, sx, xcor);
if (preOnRight) {
ier = psolve(P_data, xcor, vtemp, RIGHT);
(*nps)++;
if (ier != 0)
return((ier < 0) ? SPGMR_PSOLVE_FAIL_UNREC : SPGMR_PSOLVE_FAIL_REC);
} else {
N_VScale(ONE, xcor, vtemp);
}
/* Add vtemp to initial x to get final solution x, and return */
N_VLinearSum(ONE, x, ONE, vtemp, x);
return(SPGMR_RES_REDUCED);
}
return(SPGMR_CONV_FAIL);
}
/*************** SpgmrFree *******************************************/
void SpgmrFree(SpgmrMem mem)
{
int i, l_max;
real **Hes;
if (mem == NULL) return;
l_max = mem->l_max;
Hes = mem->Hes;
FreeVectorArray(mem->V, l_max);
for (i=0; i <= l_max; i++) free(Hes[i]);
free(Hes);
free(mem->givens);
N_VFree(mem->xcor);
free(mem->yg);
N_VFree(mem->vtemp);
free(mem);
}
/*************** Private Helper Function: FreeVectorArray ************/
static void FreeVectorArray(N_Vector *A, int indMax)
{
int j;
for (j=0; j <= indMax; j++) N_VFree(A[j]);
free(A);
}
|