1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
|
/*
* @(#)CubesS.c
*
* Taken from the X puzzle by Don Bennett, HP Labs
*
* Copyright 2003 - 2008 David A. Bagley, bagleyd@tux.org
*
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of the author not be
* used in advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.
*
* This program is distributed in the hope that it will be "useful",
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
/*
* $XConsortium: puzzle.c,v 1.14 94/03/28 18:34:10 gildea Exp $
*/
/*
* Puzzle - (C) Copyright 1987, 1988 Don Bennett.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation.
*/
/*
* Puzzle
*
* Don Bennett, HP Labs
*
* this is the code that does the real work to solve the
* puzzle. (Commonly seen as a 4x4 grid of sliding pieces
* numbered 1-15 with one empty space.)
*
* The idea for the solution algorithm - solving the puzzle
* in layers working from the outside in - comes to me
* indirectly from John Nagle.
*/
/*
* TODO
* o handle < 4x4 and 3d
*
*/
#define JMP
#ifdef JMP
#include <setjmp.h> /* longjmp ... interrupt */
#endif
#include "CubesP.h"
#define MAX_PLAN 1000
#define QUEUE_SIZE 1000
#define SOLVE_COORD 4 /* not 6 for 3D yet */
/* PUZZLE_SIZE MUST be a multiple of 2; */
#define PUZZLE_SIZE (MIN((w->cubes.sizeX/2)*2,(w->cubes.sizeY/2)*2))
#define DIST(loc1,loc2) (ABS(toColumn(loc1)-toColumn(loc2))+\
ABS(toRow(loc1)-toRow(loc2)))
static int otherDir[SOLVE_COORD] = { BOTTOM, LEFT, TOP, RIGHT };
/* layer info macros -> (innermost 4 tiles are layer zero,
* ordinal goes up as you move out)
* layerDepth - returns number of (rows down),
* (cols across) the layer starts;
* layerWidth - number of blocks wide the layer is;
*/
#define layerDepth(l) (layers-1-(l))
#define layerWidth(l) (PUZZLE_SIZE-2*layerDepth(l))
/* macros for finding the corners of each layer */
#define UL(l) (layerDepth(l)*(PUZZLE_SIZE+1)+\
extraRows*w->cubes.sizeX + extraColumns*(layers-(l)))
#define UR(l) (layerDepth(l)*(PUZZLE_SIZE+1)+layerWidth(l)-1+\
extraRows*w->cubes.sizeX+extraColumns*(layers-(l)))
#define LL(l) ((layerDepth(l)+layerWidth(l)-1)*PUZZLE_SIZE+layerDepth(l)+\
extraRows*PUZZLE_SIZE+extraColumns*(w->cubes.sizeY+1+(l)-layers))
#define LR(l) ((layerDepth(l)+layerWidth(l)-1)*(PUZZLE_SIZE+1)+\
extraRows*PUZZLE_SIZE+extraColumns*(w->cubes.sizeY+1+(l)-layers))
/* get the x and y coordinates of a location in the matrix */
#define toColumn(loc) ((loc)%w->cubes.sizeX)
#define toRow(loc) ((loc)/w->cubes.sizeX)
#define toPosition(x,y) (((y)*w->cubes.sizeX)+(x))
#define spaceX toColumn(w->cubes.spacePosition)
#define spaceY toRow(w->cubes.spacePosition)
#define nextLeft(loc) ((loc)-1)
#define nextRight(loc) ((loc)+1)
#define nextUp(loc) ((loc)-w->cubes.sizeX)
#define nextDown(loc) ((loc)+w->cubes.sizeX)
static int sizeX = 0, sizeY = 0;
static int extraRows = 0;
static int extraColumns = 0;
static int layers;
static int *tmpMatrix;
static int *targetM;
static Boolean *locked;
static int *locList;
static Boolean solvingFlag = False;
#ifdef JMP
static Boolean abortSolvingFlag = False;
static jmp_buf solve_env;
static void
abortSolving(void)
{
if (solvingFlag)
abortSolvingFlag = True;
}
#ifdef WINVER
static Boolean
processMessage(UINT msg)
{
switch (msg) {
case WM_KEYDOWN:
case WM_CLOSE:
case WM_LBUTTONDOWN:
case WM_RBUTTONDOWN:
abortSolving();
return True;
default:
return False;
}
}
#else
static void
processButton(void /*XButtonEvent *event*/)
{
abortSolving();
}
static void
processVisibility(XVisibilityEvent *event)
{
if (event->state != VisibilityUnobscured)
abortSolving();
}
static void
getNextEvent(CubesWidget w, XEvent *event)
{
if (!XCheckMaskEvent(XtDisplay(w), VisibilityChangeMask, event))
(void) XNextEvent(XtDisplay(w), event);
}
static void
processEvent(XEvent *event)
{
switch(event->type) {
case KeyPress:
case ButtonPress:
processButton(/*&event->xbutton*/);
break;
case VisibilityNotify:
processVisibility(&event->xvisibility);
break;
default:
break;
}
}
static void
processEvents(CubesWidget w)
{
XEvent event;
while (XPending(XtDisplay(w))) {
getNextEvent(w, &event);
processEvent(&event);
}
}
#endif
#endif
static int
findPiece(CubesWidget w, int piece)
{
int i;
char *buf1 = NULL, *buf2 = NULL;
for (i = 0; i < w->cubes.sizeRect; i++)
if (w->cubes.blockOfPosition[i] == piece)
return (i);
intCat(&buf1, "Piece ", piece);
stringCat(&buf2, buf1, "not found, exiting.");
free(buf1);
DISPLAY_ERROR(buf2);
free(buf2);
return -1;
}
static void
logMoveSpace(CubesWidget w,
int firstX, int firstY, int lastX, int lastY, int dir)
{
int count = ABS(firstX - lastX) + ABS(firstY - lastY);
animateSlide(w, count + 1, dir, NORMAL, True);
}
static void
moveSpace(CubesWidget w, int direction, int distance)
{
int i, step, count;
int firstX, firstY, lastX, lastY, shiftDir;
int tempSpaceX = spaceX, tempSpaceY = spaceY;
int dir = direction, dist = distance;
#ifdef JMP
#ifdef WINVER
MSG msg;
if (PeekMessage(&msg, NULL, 0, 0, 0)) {
if (!processMessage(msg.message)) {
if (GetMessage(&msg, NULL, 0, 0))
DispatchMessage(&msg);
}
}
#else
processEvents(w);
#endif
if (solvingFlag && abortSolvingFlag)
longjmp(solve_env, 1);
#endif
if (dist == 0)
return;
if (dir == LEFT) {
dir = RIGHT;
dist = -dist;
}
if (dir == TOP) {
dir = BOTTOM;
dist = -dist;
}
firstX = spaceX;
firstY = spaceY;
step = 1;
count = dist;
if (dist < 0) {
step = -1;
count = -count;
}
/* firstX,Y are the location of the first piece to be shifted */
if (dir == RIGHT)
firstX += step;
else
firstY += step;
/* shiftDir is the direction the pieces need to be shifted */
if (dist < 0) {
shiftDir = dir;
} else {
shiftDir= otherDir[dir];
}
for (i = 0; i < count; i++) {
if (dir == RIGHT) {
tempSpaceX += step;
} else { /* dir == BOTTOM */
tempSpaceY += step;
}
}
lastX = tempSpaceX;
lastY = tempSpaceY;
/* the blocks firstX,Y through lastX,Y need to be shifted
* one block in the shiftDir direction;
*/
logMoveSpace(w, firstX, firstY, lastX, lastY, shiftDir);
}
#ifdef DEBUG
static void
printMatrix(CubesWidget w, int **mat)
{
int i, j;
for (j = 0; j < w->cubes.sizeY; j++) {
for (i = 0; i < w->cubes.sizeX; i++)
(void) printf(" %2d ",(*mat)[toPosition(i, j)]);
(void) printf("\n");
}
(void) printf("\n");
}
#endif
static void
planMove(CubesWidget w, int startLoc, int endLoc, int **path)
{
int i, nextLoc = 0, nextDist, chosen, moveNum;
Boolean foundPath = False;
int locX, locY;
int locQueue[QUEUE_SIZE];
int locDist[QUEUE_SIZE];
Boolean locQueueUsed[QUEUE_SIZE];
int queueHead = 0, queueTail = 0;
int candidate[SOLVE_COORD];
for (i = 0; i < w->cubes.sizeRect; i++) {
tmpMatrix[i] = (locked[i]) ? -1 : 0;
locList[i] = -1;
}
for (i = 0; i < QUEUE_SIZE; i++)
locQueueUsed[i] = False;
locQueue[0] = startLoc;
locDist[0] = DIST(endLoc, startLoc);
tmpMatrix[startLoc] = 1;
queueTail++;
/* if the selected element has a distance of zero,
* we have found it; (This really is not a queue,
* but rather a range of elements to be searched
* for an element of the desired properties;
*/
/* as we search for a path,
* LINK array is used to indicate the direction from which
* we moved into a location;
* TMP_MATRIX array is used to keep track of the move number;
*/
while (queueHead < queueTail && !foundPath) {
/* find the entry that
* (1) has the smallest distance and
* (2) has the smallest move number;
*/
nextLoc = locQueue[queueHead];
nextDist = locDist[queueHead];
chosen = queueHead;
for (i = queueHead + 1; i < queueTail; i++)
if (!locQueueUsed[i] &&
((locDist[i] < nextDist) ||
((locDist[i] == nextDist) &&
(tmpMatrix[locQueue[i]] <
tmpMatrix[nextLoc])))) {
nextLoc = locQueue[i];
nextDist = locDist[i];
chosen = i;
}
if (nextDist == 0) {
foundPath = True;
break;
}
locQueueUsed[chosen] = True;
/* permute the chosen element */
candidate[TOP] = nextUp(nextLoc);
candidate[LEFT] = nextLeft(nextLoc);
candidate[BOTTOM] = nextDown(nextLoc);
candidate[RIGHT] = nextRight(nextLoc);
locX = toColumn(nextLoc);
locY = toRow(nextLoc);
if (locX == 0)
candidate[LEFT] = -1;
if (locX == w->cubes.sizeX - 1)
candidate[RIGHT] = -1;
if (locY == 0)
candidate[TOP] = -1;
if (locY == w->cubes.sizeY - 1)
candidate[BOTTOM] = -1;
moveNum = tmpMatrix[nextLoc] + 1;
for (i = 0; i < SOLVE_COORD; i++)
if (candidate[i] != -1 &&
tmpMatrix[candidate[i]] == 0) {
tmpMatrix[candidate[i]] = moveNum;
/*
* the next line works because the
* candidate index is same as the
* direction moved to reach the
* candidate;
*/
locList[candidate[i]] = i;
locQueue[queueTail] = candidate[i];
locDist[queueTail] =
DIST(endLoc, candidate[i]);
queueTail++;
if (queueTail == QUEUE_SIZE) {
DISPLAY_ERROR(
"Queue size is exceeded, exiting.");
return;
}
}
/* delete used items from the front of the queue */
while (locQueueUsed[queueHead] && queueHead < queueTail)
queueHead++;
}
#ifdef DEBUG
print_matrix(w, &(w->cubes.blockOfPosition));
print_matrix(w, &locked);
#endif /* DEBUG */
if (!foundPath) {
char *buf1 = NULL, *buf2 = NULL;
intCat(&buf1, "Could not find a way to move ", startLoc);
stringCat(&buf2, buf1, " (");
free(buf1);
intCat(&buf1, buf2, toColumn(startLoc));
free(buf2);
stringCat(&buf2, buf1, ",");
free(buf1);
intCat(&buf1, buf2, toRow(startLoc));
free(buf2);
stringCat(&buf2, buf1, ") to ");
free(buf1);
intCat(&buf1, buf2, endLoc);
free(buf2);
stringCat(&buf2, buf1, " (");
free(buf1);
intCat(&buf1, buf2, toColumn(endLoc));
free(buf2);
stringCat(&buf2, buf1, ",");
free(buf1);
intCat(&buf1, buf2, toRow(endLoc));
free(buf2);
stringCat(&buf2, buf1, "), exiting.");
free(buf1);
DISPLAY_ERROR(buf2);
free(buf2);
return;
}
/*
* copy the path we found into the path array;
* element 0 will contain the number of moves in the path;
* by the time we get there, nextLoc is in the final location
*/
(*path)[0] = tmpMatrix[nextLoc] - 1;
for (i = (*path)[0]; i > 0; i--) {
(*path)[i] = locList[nextLoc];
switch(locList[nextLoc]) {
case LEFT:
nextLoc = nextRight(nextLoc);
break;
case RIGHT:
nextLoc = nextLeft(nextLoc);
break;
case TOP:
nextLoc = nextDown(nextLoc);
break;
case BOTTOM:
nextLoc = nextUp(nextLoc);
break;
}
}
}
static void
myMoveSpaceTo(CubesWidget w, int loc) {
int i, currentDir, dist = 0;
int plan[MAX_PLAN];
int *planPtr = &(plan[0]);
planMove(w, toPosition(spaceX, spaceY), loc, &planPtr);
currentDir = plan[1];
for (i = 1; i <= plan[0]; i++) {
if (plan[i] == currentDir) {
dist++;
} else if (plan[i] == otherDir[currentDir]) {
dist--;
} else {
moveSpace(w, currentDir, dist);
currentDir = plan[i];
dist = 1;
}
}
moveSpace(w, currentDir, dist);
}
static void
movePiece(CubesWidget w, int location, int targetLoc) {
int i;
int plan[MAX_PLAN];
int *planPtr = &(plan[0]);
int loc = location;
planMove(w, loc, targetLoc, &planPtr);
for (i = 1; i <= plan[0]; i++)
switch(plan[i]) {
case LEFT:
locked[loc] = True;
myMoveSpaceTo(w, nextLeft(loc));
locked[loc] = False;
myMoveSpaceTo(w, loc);
loc = nextLeft(loc);
break;
case RIGHT:
locked[loc] = True;
myMoveSpaceTo(w, nextRight(loc));
locked[loc] = False;
myMoveSpaceTo(w, loc);
loc = nextRight(loc);
break;
case TOP:
locked[loc] = True;
myMoveSpaceTo(w, nextUp(loc));
locked[loc] = False;
myMoveSpaceTo(w, loc);
loc = nextUp(loc);
break;
case BOTTOM:
locked[loc] = True;
myMoveSpaceTo(w, nextDown(loc));
locked[loc] = False;
myMoveSpaceTo(w, loc);
loc = nextDown(loc);
break;
}
}
/* SYSV386 gets this from libBerk.a */
#if defined(USG) && !defined(CRAY) && !defined(SYSV386)
int gettimeofday (tvp, tzp)
struct timeval *tvp;
struct timezone *tzp;
{
time (&tvp->tv_sec);
tvp->tv_usec = 0L;
/* ignore tzp for now since this file doesn't use it */
}
#endif
static void
myFree(void)
{
if (tmpMatrix)
free(tmpMatrix);
if (targetM)
free(targetM);
if (locked)
free(locked);
if (locList)
free(locList);
}
static void
myInitialize(CubesWidget w)
{
/* Initialize the position and
* the targetM matrices;
*/
int i;
int spX, spY;
sizeX=w->cubes.sizeX;
sizeY=w->cubes.sizeY;
layers = PUZZLE_SIZE >> 1;
extraRows = w->cubes.sizeY - PUZZLE_SIZE;
extraColumns = w->cubes.sizeX - PUZZLE_SIZE;
tmpMatrix = (int *) malloc(w->cubes.sizeRect * sizeof(int));
targetM = (int *) malloc(w->cubes.sizeRect * sizeof(int));
locked = (Boolean *) malloc(w->cubes.sizeRect * sizeof(int));
locList = (int *) malloc(w->cubes.sizeRect * sizeof(int));
for (i = 0; i < w->cubes.sizeRect; i++)
locked[i] = False;
if (!tmpMatrix || !targetM || !locked || !locList ||
!w->cubes.blockOfPosition) {
DISPLAY_ERROR("Not enough memory, exiting.");
}
for (i = 0; i < w->cubes.sizeRect - 1; i++) {
targetM[i] = i + 1;
}
targetM[w->cubes.sizeRect - 1] = 0;
/*
* Move the space into the LR corner of the
* innermost layer;
* For each of the outer layers, move the space
* left one and up one;
*/
spX = w->cubes.sizeX - 1;
spY = w->cubes.sizeY - 1;
/* Make solution with space at center bottom right */
for (i = 0; i < layers - 1; i++) {
/* move the space left one; */
targetM[toPosition(spX, spY)] =
targetM[toPosition((spX - 1), spY)];
targetM[toPosition((spX - 1),spY)] = 0;
spX -= 1;
/* move the space up one; */
targetM[toPosition(spX, spY)] =
targetM[toPosition(spX, (spY - 1))];
targetM[toPosition(spX, (spY - 1))] = 0;
spY -= 1;
}
}
/*
* To solve this puzzle, work from the outside in;
* For each successive ring working your way in,
*
* (1) put the corners in place;
* (2) finish off the rest of the boundaries;
* (3) do the next layer in;
*/
static void
solveLayer0(CubesWidget w)
{
movePiece(w, findPiece(w, targetM[UL(0)]), UL(0));
myMoveSpaceTo(w, LR(0));
}
static void
doLastTwoOnEdge(CubesWidget w, int ntLast, int last, int tmp, int emergency)
{
int lastPiece, ntLastPiece;
lastPiece = targetM[last];
ntLastPiece = targetM[ntLast];
movePiece(w, findPiece(w, ntLastPiece),last);
locked[last] = True;
/*
* if the last piece is stuck where the next to the last
* piece should go, do some magic to fix things up;
*/
if (findPiece(w, 0) == ntLast)
myMoveSpaceTo(w, tmp);
if (findPiece(w, lastPiece) == ntLast) {
/* a rescue is necessary */
locked[last] = False;
movePiece(w, findPiece(w, ntLastPiece), ntLast);
locked[ntLast] = True;
movePiece(w, findPiece(w, lastPiece), emergency);
locked[emergency] = True;
locked[ntLast] = False;
movePiece(w, findPiece(w, ntLastPiece), last);
locked[emergency] = False;
locked[last] = True;
}
movePiece(w, findPiece(w, lastPiece), tmp);
locked[tmp] = True;
myMoveSpaceTo(w, ntLast);
locked[tmp] = False;
locked[last] = False;
myMoveSpaceTo(w, last);
myMoveSpaceTo(w, tmp);
locked[ntLast] = True;
locked[last] = True;
}
static void
solveLayer(CubesWidget w, int layer)
{
int i, tmp, last, ntLast, emergency;
int ul, ur, ll, lr;
if (layer == 0) {
solveLayer0(w);
} else {
/* find and put each of the corners into place */
ul = UL(layer);
ur = UR(layer);
ll = LL(layer);
lr = LR(layer);
movePiece(w, findPiece(w, targetM[ul]), ul);
locked[ul] = True;
movePiece(w, findPiece(w, targetM[ur]), ur);
locked[ur] = True;
movePiece(w, findPiece(w, targetM[ll]), ll);
locked[ll] = True;
movePiece(w, findPiece(w, targetM[lr]), lr);
locked[lr] = True;
/*
* Strategy for doing the pieces between the corners:
* (1) put all but the last two edge pieces in place;
* (2) put the next to the last piece next to the
* corner;
* (3) put the last piece one move in from its final
* position;
* (4) move the space to the final position of the
* next to the last piece;
* (5) slide the next to the last piece over and the
* last piece into the edge where it goes.
*/
/* top edge */
for (i = ul + 1; i < ur - 2; i++) {
movePiece(w, findPiece(w, targetM[i]), i);
locked[i] = True;
}
ntLast = i;
last = i + 1;
tmp = UR(layer - 1);
emergency = nextDown(tmp);
doLastTwoOnEdge(w, ntLast, last, tmp, emergency);
/* bottom edge */
for (i = ll + 1; i < lr - 2; i++) {
movePiece(w, findPiece(w, targetM[i]), i);
locked[i] = True;
}
ntLast = i;
last = i + 1;
tmp = LR(layer - 1);
emergency = nextUp(tmp);
doLastTwoOnEdge(w, ntLast, last, tmp, emergency);
/* left side */
for (i = ul + w->cubes.sizeX; i < ll - 2 * w->cubes.sizeX;
i += w->cubes.sizeX) {
movePiece(w, findPiece(w, targetM[i]), i);
locked[i] = True;
}
ntLast = i;
last = i + w->cubes.sizeX;
tmp = LL(layer - 1);
emergency = nextRight(tmp);
doLastTwoOnEdge(w, ntLast, last, tmp, emergency);
/* right side */
for (i = ur + w->cubes.sizeX; i < lr - 2 * w->cubes.sizeX;
i += w->cubes.sizeX) {
movePiece(w, findPiece(w, targetM[i]), i);
locked[i] = True;
}
ntLast = i;
last = i + w->cubes.sizeX;
tmp = LR(layer - 1);
emergency = nextLeft(tmp);
doLastTwoOnEdge(w, ntLast, last, tmp, emergency);
}
}
static void
solveRow(CubesWidget w, int row)
{
int i, loc, last, ntLast, tmp, emergency;
for (i = 0; i < w->cubes.sizeX - 2; i++) {
loc = toPosition(i, row);
movePiece(w, findPiece(w, targetM[loc]), loc);
locked[loc] = True;
}
ntLast = toPosition(w->cubes.sizeX - 2, row);
last = toPosition(w->cubes.sizeX - 1, row);
tmp = last + w->cubes.sizeX;
emergency = tmp + w->cubes.sizeX;
doLastTwoOnEdge(w, ntLast, last, tmp, emergency);
}
static void
solveCol(CubesWidget w, int col)
{
int i, loc, last, ntLast, tmp, emergency;
for (i = 0; i < w->cubes.sizeY - 2; i++) {
loc = toPosition(col, i);
movePiece(w, findPiece(w, targetM[loc]), loc);
locked[loc] = True;
}
ntLast = toPosition(col, w->cubes.sizeY - 2);
last = toPosition(col, w->cubes.sizeY - 1);
tmp = last + 1;
emergency = tmp + 1;
doLastTwoOnEdge(w, ntLast, last, tmp, emergency);
}
/* This procedure coordinates the solution process. */
void
solveSomeBlocks(CubesWidget w)
{
int i;
if (sizeX != w->cubes.sizeX || sizeY != w->cubes.sizeY) {
myFree();
myInitialize(w);
}
setPuzzle(w, ACTION_RESET);
/*
* determine the position we want to be in when
* we are done; This position will have the space in
* the center; Then, we'll move the space back to
* the outside.
*/
if (solvingFlag)
return;
#ifdef JMP
if (!setjmp(solve_env))
#endif
{
solvingFlag = True;
for (i = 0; i < w->cubes.sizeRect; i++)
locked[i] = False;
/* solve the extra rows and cols */
for (i = 0; i < extraRows; i++)
solveRow(w, i);
for (i = 0; i < extraColumns; i++)
solveCol(w, i);
/* solve each layer */
for (i = layers - 1; i >= 0; i--) {
solveLayer(w, i);
}
/* move the space back out to the LR corner; */
/* i is the layer the space is moving into */
for (i = 1; i < layers; i++) {
moveSpace(w, BOTTOM, 1);
moveSpace(w, RIGHT, 1);
}
}
#ifdef JMP
else {
drawAllBlocks(w);
}
abortSolvingFlag = False;
#endif
for (i = 0; i < w->cubes.sizeRect; i++)
locked[i] = False;
solvingFlag = False;
w->cubes.cheat = True; /* Assume the worst. */
setPuzzle(w, ACTION_COMPUTED);
}
|